論文の概要: Hamiltonian Dynamics Learning: A Scalable Approach to Quantum Process Characterization
- arxiv url: http://arxiv.org/abs/2503.24171v1
- Date: Mon, 31 Mar 2025 14:50:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:34:35.366386
- Title: Hamiltonian Dynamics Learning: A Scalable Approach to Quantum Process Characterization
- Title(参考訳): Hamiltonian Dynamics Learning: 量子プロセス解析へのスケーラブルなアプローチ
- Authors: Yusen Wu, Yukun Zhang, Chuan Wang, Xiao Yuan,
- Abstract要約: 短時間のハミルトン力学に特化して設計された効率的な量子プロセス学習法を提案する。
我々は、量子機械学習の応用を実証し、このプロトコルは、ユニタリ変換を直接学習することで、変分量子ニューラルネットワークの効率的なトレーニングを可能にする。
この研究は、実用的な量子力学学習のための新しい理論的基盤を確立し、短期的およびフォールトトレラントな量子コンピューティングの両方においてスケーラブルな量子プロセスのキャラクタリゼーションの道を開いた。
- 参考スコア(独自算出の注目度): 6.741097425426473
- License:
- Abstract: Quantum process characterization is a fundamental task in quantum information processing, yet conventional methods, such as quantum process tomography, require prohibitive resources and lack scalability. Here, we introduce an efficient quantum process learning method specifically designed for short-time Hamiltonian dynamics. Our approach reconstructs an equivalent quantum circuit representation from measurement data of unknown Hamiltonian evolution without requiring additional assumptions and achieves polynomial sample and computational efficiency. Our results have broad applications in various directions. We demonstrate applications in quantum machine learning, where our protocol enables efficient training of variational quantum neural networks by directly learning unitary transformations. Additionally, it facilitates the prediction of quantum expectation values with provable efficiency and provides a robust framework for verifying quantum computations and benchmarking realistic noisy quantum hardware. This work establishes a new theoretical foundation for practical quantum dynamics learning, paving the way for scalable quantum process characterization in both near-term and fault-tolerant quantum computing.
- Abstract(参考訳): 量子プロセスの特徴付けは、量子情報処理の基本的なタスクであるが、量子プロセストモグラフィーのような従来の手法では、禁止的なリソースを必要とし、スケーラビリティを欠いている。
本稿では,短時間のハミルトン力学に特化して設計された,効率的な量子プロセス学習法を提案する。
提案手法は,未知のハミルトン進化の測定データから等価な量子回路表現を再構成する。
我々の結果は様々な方向に広く応用されている。
我々は、量子機械学習の応用を実証し、このプロトコルは、ユニタリ変換を直接学習することで、変分量子ニューラルネットワークの効率的なトレーニングを可能にする。
さらに、証明可能な効率で量子期待値を予測しやすくし、量子計算を検証し、現実的なノイズの多い量子ハードウェアをベンチマークするための堅牢なフレームワークを提供する。
この研究は、実用的な量子力学学習のための新しい理論的基盤を確立し、短期的およびフォールトトレラントな量子コンピューティングの両方においてスケーラブルな量子プロセスのキャラクタリゼーションの道を開いた。
関連論文リスト
- Classical post-processing approach for quantum amplitude estimation [0.0]
本稿では,量子リソースへの依存を最小限に抑えつつ計算効率を向上させるために,量子振幅推定(QAE)手法を提案する。
提案手法は,量子コンピュータを用いて信号列を生成し,量子振幅を古典的な後処理手法により推定する。
論文 参考訳(メタデータ) (2025-02-08T15:51:31Z) - Quantum Simulation for Dynamical Transition Rates in Open Quantum Systems [0.0]
マルコフ開量子系における動的遷移率を計算するための,新しい,効率的な量子シミュレーション手法を提案する。
我々の新しいアプローチは、現在の量子化学研究のボトルネックを超える可能性を秘めている。
論文 参考訳(メタデータ) (2024-12-23T02:53:05Z) - Experimental demonstration of enhanced quantum tomography via quantum reservoir processing [0.8672788660913944]
ボーソニック回路の量子力学プラットフォーム上での連続可変状態再構成のための量子貯水池処理手法を実験的に実証した。
この方法で学習したマップは,複数のテスト状態に対して高い再現性を実現し,システムの理想化されたモデルに基づいて計算されたマップよりも大幅に性能を向上することを示す。
論文 参考訳(メタデータ) (2024-12-15T02:02:43Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
各量子状態に対するゲートの作用を特徴付ける新しい量子ゲート距離を提案する。
提案手法は、経験的量子機械学習の3つの問題において、ベンチマークを著しく上回っている。
論文 参考訳(メタデータ) (2022-06-28T16:23:24Z) - An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer [0.0]
量子コンピュータ上での単位ステップ関数の形で非線形性を近似するための振幅に基づく実装を提案する。
より先進的な量子アルゴリズムに埋め込まれた場合、古典的コンピュータから直接入力を受ける2つの異なる回路タイプを量子状態として記述する。
論文 参考訳(メタデータ) (2022-06-07T07:14:12Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Quantum walk processes in quantum devices [55.41644538483948]
グラフ上の量子ウォークを量子回路として表現する方法を研究する。
提案手法は,量子ウォークアルゴリズムを量子コンピュータ上で効率的に実装する方法である。
論文 参考訳(メタデータ) (2020-12-28T18:04:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。