Beijing Normal University 12-meter Interferometric kHz GW Detector Prototype: Design and Scientific Prospects
- URL: http://arxiv.org/abs/2503.24178v3
- Date: Thu, 26 Jun 2025 03:08:03 GMT
- Title: Beijing Normal University 12-meter Interferometric kHz GW Detector Prototype: Design and Scientific Prospects
- Authors: Mengyao Wang, Fan Zhang, Xinyao Guo, Haixing Miao, Huan Yang, Yiqiu Ma, Haoyu Wang, Teng Zhang, Mengdi Cao, Yuchao Chen, Xiaoman Huang, Junlang Li, Fangfei Liu, Jianyu Liu, Yuan Pan, Yulin Xia, Jianbo Xing, Yujie Yu, Chenjie Zhou, Zong-hong Zhu,
- Abstract summary: A new configuration employing an L-shaped optical resonator was proposed to overcome this limitation.<n>The 12-meter prototype at Beijing Normal University is designed to demonstrate the sensing and control schemes of this new kHz detector configuration.<n>This paper presents an overview of the prototype, including its optical design and current development status of key components.
- Score: 11.77016441340642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current gravitational-wave detectors have achieved remarkable sensitivity around 100 Hz, enabling ground-breaking discoveries. Enhancing sensitivity at higher frequencies in the kilohertz (kHz) range promises access to rich physics, particularly the extreme conditions during the merger stage of binary neutron stars. However, the high-frequency sensitivity of Michelson-based interferometers is fundamentally limited by their linear optical cavities, which are optimized for low-frequency signal enhancement. In [Phys. Rev. X 13, 021019 (2023)], a new configuration employing an L-shaped optical resonator was proposed to overcome this limitation, offering exceptional sensitivity in the kHz band. As a pathfinder, the 12-meter prototype at Beijing Normal University is designed to demonstrate the sensing and control schemes of this new kHz detector configuration and to explore its performance in the high-power regime with suspended optics. Beyond its primary scientific goal, the prototype also offers potential sensitivity in the megahertz (MHz) range, potentially enabling constraints on exotic sources. This paper presents an overview of the prototype, including its optical design and current development status of key components.
Related papers
- Photonic single-arm gravitational wave detectors based on the quantum state transition of orbital angular momentum [0.20482269513546458]
We demonstrate the potential of a new photonic single-arm gravitational wave detection technique.
It is demonstrated that when a photon possessing OAM of 1 interacts with GWs, it may relinquish its OAM and produce a central signal that may be detected.
The detector provides a high and steady rate of detected photons in the low-frequency range ($1$ Hz), opens a potential window to identify GWs in the mid-frequency range ($1sim10$ Hz)
arXiv Detail & Related papers (2025-04-23T06:32:06Z) - Rydberg Atomic Quantum Receivers for Classical Wireless Communication and Sensing [71.94873601156017]
Rydberg atomic quantum receivers (RAQR) are emerging quantum precision sensing platforms designed for receiving radio frequency (RF) signals.
RAQRs realize RF-to-optical conversions based on light-atom interactions.
Initial experimental studies have demonstrated their capabilities in classical wireless communications and sensing.
arXiv Detail & Related papers (2024-09-22T15:55:02Z) - Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - Coherent feedback for quantum expander in gravitational wave
observatories [0.0]
We propose a new detector design that features an additional optical cavity in the detector output and an internal squeeze operation.
This approach allows to boost the sensitivity at high frequencies, at the same time providing a compact and tunable design for signal extraction.
We demonstrate that our design allows to improve the sensitivity of the high-frequency detector concept NEMO, increasing the detection rates by around 15%.
arXiv Detail & Related papers (2024-03-06T14:48:13Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Optimal baseline exploitation in vertical dark-matter detectors based on
atom interferometry [50.06952271801328]
Several terrestrial detectors for gravitational waves and dark matter based on long-baseline atom interferometry are currently in the final planning stages or already under construction.
We show that resonant-mode detectors based on multi-diamond fountain gradiometers achieve the optimal, shot-noise limited, sensitivity if their height constitutes 20% of the available baseline.
arXiv Detail & Related papers (2023-09-08T08:38:24Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - First-step experiment in developing optical-spring quantum locking for
DECIGO: sensitivity optimization for simulated quantum noise by completing
the square [1.7030294562102306]
DECIGO has 1,000-km-long arm cavities mainly to detect primordial gravitational waves (PGW) at lower around 0.1 Hz.
We experimentally verify one key element of the optical-spring quantum locking: sensitivity optimization by completing the square of multiple detector outputs.
arXiv Detail & Related papers (2022-11-23T03:32:10Z) - Toward deep-learning-assisted spectrally-resolved imaging of magnetic
noise [52.77024349608834]
We implement a deep neural network to efficiently reconstruct the spectral density of the underlying fluctuating magnetic field.
These results create opportunities for the application of machine-learning methods to color-center-based nanoscale sensing and imaging.
arXiv Detail & Related papers (2022-08-01T19:18:26Z) - Low frequency gravitational waves emerge Berry phase [0.44998333629984877]
We propose a toy detector model whose quantum state is being investigated at a low-frequency of GWs.
The interaction with low frequency GWs naturally provides adiabatic approximation in the calculation.
We argue that such geometric phase detection may serve as a manifestation of the footprint of GWs.
arXiv Detail & Related papers (2022-07-18T15:37:16Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Boosting the sensitivity of high frequency gravitational wave detectors
by PT-symmetry [9.717134926446956]
Current laser interferometer gravitational wave detectors have limited signal response at the kilo-Hertz band.
This work proposes an alternative protocol for boosting the sensitivity of the gravitational wave detectors at high frequency.
With the auxiliary quantum amplifier, this design has the feature of Parity-Time (PT) symmetry so that the detection band will be significantly broadened.
arXiv Detail & Related papers (2022-06-24T09:18:39Z) - Nondegenerate internal squeezing: an all-optical, loss-resistant quantum
technique for gravitational-wave detection [0.0]
We investigate nondegenerate internal squeezing: optical parametric oscillation inside the signal-recycling cavity with distinct signal-mode and idler-mode frequencies.
This technique is tolerant to decoherence from optical detection loss and is feasible for broadband sensitivity enhancement.
arXiv Detail & Related papers (2022-06-14T00:16:42Z) - Investigation and comparison of measurement schemes in the low frequency
biosensing regime using solid-state defect centers [58.720142291102135]
Solid state defects in diamond make promising quantum sensors with high sensitivity andtemporal resolution.
Inhomogeneous broadening and drive amplitude variations have differing impacts on the sensitivity depending on the sensing scheme used.
We numerically investigate and compare the predicted sensitivity of schemes based on continuous-wave (CW) optically detected magnetic resonance (ODMR) spectroscopy, pi-pulse ODMR and Ramsey interferometry.
arXiv Detail & Related papers (2021-09-27T13:05:23Z) - Prototype Superfluid Gravitational Wave Detector [0.0]
We study a cross-shaped cavity filled with superfluid $4$He as a prototype resonant-mass gravitational wave detector.
Using a membrane and a re-entrant microwave cavity as a sensitive optomechanical transducer, we were able to observe the thermally excited high-$Q$ acoustic modes of the helium at 20 mK temperature.
To facilitate the broadband detection of continuous gravitational waves, we tune the kilohertz-scale mechanical resonance frequencies up to 173 Hz/bar by pressurizing the helium.
arXiv Detail & Related papers (2021-06-30T22:00:39Z) - High-Frequency Gravitational-Wave Detection Using a Chiral Resonant
Mechanical Element and a Short Unstable Optical Cavity [59.66860395002946]
We suggest the measurement of the twist of a chiral mechanical element induced by a gravitational wave.
The induced twist rotates a flat optical mirror on top of this chiral element, leading to the deflection of an incident laser beam.
We estimate a gravitational wave strain sensitivity between 10-21/sqrtHz and 10-23/sqrtHz at around 10 kHz frequency.
arXiv Detail & Related papers (2020-07-15T20:09:43Z) - A protocol of potential advantage in the low frequency range to
gravitational wave detection with space based optical atomic clocks [0.0]
We propose a new measurement method for gravitational wave detection in low frequency with optical lattice atomic clocks.
Our result is timely for the ongoing development of space-born observatories aimed at studying physical and astrophysical effects associated with low-frequency GW.
arXiv Detail & Related papers (2020-05-14T08:56:58Z) - Force and acceleration sensing with optically levitated nanogram masses
at microkelvin temperatures [57.72546394254112]
This paper demonstrates cooling of the center-of-mass motion of 10 $mu$m-diameter optically levitated silica spheres to an effective temperature of $50pm22 mu$K.
It is shown that under these conditions the spheres remain stably trapped at pressures of $sim 10-7$ mbar with no active cooling for periods longer than a day.
arXiv Detail & Related papers (2020-01-29T16:20:35Z) - Proposal for an optical interferometric measurement of the gravitational
red-shift with satellite systems [52.77024349608834]
Einstein Equivalence Principle (EEP) underpins all metric theories of gravity.
The iconic gravitational red-shift experiment places two fermionic systems, used as clocks, in different gravitational potentials.
A fundamental point in the implementation of a satellite large-distance optical interferometric experiment is the suppression of the first-order Doppler effect.
We propose a novel scheme to suppress it, by subtracting the phase-shifts measured in the one-way and in the two-way configuration between a ground station and a satellite.
arXiv Detail & Related papers (2018-11-12T16:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.