A Comparison of Parametric Dynamic Mode Decomposition Algorithms for Thermal-Hydraulics Applications
- URL: http://arxiv.org/abs/2503.24205v1
- Date: Mon, 31 Mar 2025 15:23:22 GMT
- Title: A Comparison of Parametric Dynamic Mode Decomposition Algorithms for Thermal-Hydraulics Applications
- Authors: Stefano Riva, Andrea Missaglia, Carolina Introini, In Cheol Bang, Antonio Cammi,
- Abstract summary: This work contributes to the research field of learning models from available data by comparing different algorithms deployed in the field.<n>To this aim, three different thermal-hydraulics problems are considered, whose datasets are, respectively, obtained with the FEniCS finite element solver and retrieved from the CFDbench dataset.
- Score: 0.5033155053523042
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In recent years, algorithms aiming at learning models from available data have become quite popular due to two factors: 1) the significant developments in Artificial Intelligence techniques and 2) the availability of large amounts of data. Nevertheless, this topic has already been addressed by methodologies belonging to the Reduced Order Modelling framework, of which perhaps the most famous equation-free technique is Dynamic Mode Decomposition. This algorithm aims to learn the best linear model that represents the physical phenomena described by a time series dataset: its output is a best state operator of the underlying dynamical system that can be used, in principle, to advance the original dataset in time even beyond its span. However, in its standard formulation, this technique cannot deal with parametric time series, meaning that a different linear model has to be derived for each parameter realization. Research on this is ongoing, and some versions of a parametric Dynamic Mode Decomposition already exist. This work contributes to this research field by comparing the different algorithms presently deployed and assessing their advantages and shortcomings compared to each other. To this aim, three different thermal-hydraulics problems are considered: two benchmark 'flow over cylinder' test cases at diverse Reynolds numbers, whose datasets are, respectively, obtained with the FEniCS finite element solver and retrieved from the CFDbench dataset, and the DYNASTY experimental facility operating at Politecnico di Milano, which studies the natural circulation established by internally heated fluids for Generation IV nuclear applications, whose dataset was generated using the RELAP5 nodal solver.
Related papers
- Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) trains a Neural SDE in a simulation-free manner, bypassing backpropagation through the dynamics.
We demonstrate improved performance on three clinical time series datasets in terms of absolute performance and uncertainty prediction.
arXiv Detail & Related papers (2024-10-28T15:54:50Z) - MaD-Scientist: AI-based Scientist solving Convection-Diffusion-Reaction Equations Using Massive PINN-Based Prior Data [22.262191225577244]
We explore whether a similar approach can be applied to scientific foundation models (SFMs)
We collect low-cost physics-informed neural network (PINN)-based approximated prior data in the form of solutions to partial differential equations (PDEs) constructed through an arbitrary linear combination of mathematical dictionaries.
We provide experimental evidence on the one-dimensional convection-diffusion-reaction equation, which demonstrate that pre-training remains robust even with approximated prior data.
arXiv Detail & Related papers (2024-10-09T00:52:00Z) - Scaling up Probabilistic PDE Simulators with Structured Volumetric Information [23.654711580674885]
We propose a framework combining a discretization scheme based on the popular Finite Volume Method with complementary numerical linear algebra techniques.
Experiments, including atemporal tsunami simulation, demonstrate substantially improved scaling behavior of this approach over previous collocation-based techniques.
arXiv Detail & Related papers (2024-06-07T15:38:27Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary Differential Equations for Compressible Navier--Stokes Equations [0.1578515540930834]
We introduce an end-to-end differentiable framework for solving the compressible Navier-Stokes equations.
This integrated approach combines a differentiable discontinuous Galerkin solver with a neural network source term.
We demonstrate the performance of the proposed framework through two examples.
arXiv Detail & Related papers (2023-10-29T04:26:23Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Forecasting through deep learning and modal decomposition in two-phase
concentric jets [2.362412515574206]
This work aims to improve fuel chamber injectors' performance in turbofan engines.
It requires the development of models that allow real-time prediction and improvement of the fuel/air mixture.
arXiv Detail & Related papers (2022-12-24T12:59:41Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - SODEN: A Scalable Continuous-Time Survival Model through Ordinary
Differential Equation Networks [14.564168076456822]
We propose a flexible model for survival analysis using neural networks along with scalable optimization algorithms.
We demonstrate the effectiveness of the proposed method in comparison to existing state-of-the-art deep learning survival analysis models.
arXiv Detail & Related papers (2020-08-19T19:11:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.