論文の概要: SQuat: Subspace-orthogonal KV Cache Quantization
- arxiv url: http://arxiv.org/abs/2503.24358v1
- Date: Mon, 31 Mar 2025 17:37:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:39:34.767287
- Title: SQuat: Subspace-orthogonal KV Cache Quantization
- Title(参考訳): SQuat: Subspace-orthogonal KV Cache Quantization
- Authors: Hao Wang, Ligong Han, Kai Xu, Akash Srivastava,
- Abstract要約: SQuat(Subspace-orthogonal KV cache Quantization)を導入し、ピークメモリを2.17から2.82に削減し、スループットを2.45から3.60に改善し、既存のKVキャッシュ量子化アルゴリズムよりも優れたベンチマークスコアを得る。
我々は,ピークメモリを2.17から2.82に削減し,スループットを2.45から3.60に改善し,既存のKVキャッシュ量子化アルゴリズムよりも優れたベンチマークスコアを得ることを示した。
- 参考スコア(独自算出の注目度): 19.131705063324883
- License:
- Abstract: The key-value (KV) cache accelerates LLMs decoding by storing KV tensors from previously generated tokens. It reduces redundant computation at the cost of increased memory usage. To mitigate this overhead, existing approaches compress KV tensors into lower-bit representations; however, quantization errors can accumulate as more tokens are generated, potentially resulting in undesired outputs. In this paper, we introduce SQuat (Subspace-orthogonal KV cache quantization). It first constructs a subspace spanned by query tensors to capture the most critical task-related information. During key tensor quantization, it enforces that the difference between the (de)quantized and original keys remains orthogonal to this subspace, minimizing the impact of quantization errors on the attention mechanism's outputs. SQuat requires no model fine-tuning, no additional calibration dataset for offline learning, and is grounded in a theoretical framework we develop. Through numerical experiments, we show that our method reduces peak memory by 2.17 to 2.82, improves throughput by 2.45 to 3.60, and achieves more favorable benchmark scores than existing KV cache quantization algorithms.
- Abstract(参考訳): キー値(KV)キャッシュは、以前に生成されたトークンからKVテンソルを格納することで、LCMの復号を高速化する。
これにより、メモリ使用量の増加による冗長な計算が削減される。
このオーバーヘッドを軽減するため、既存のアプローチではKVテンソルを低ビット表現に圧縮するが、より多くのトークンが生成されると量子化エラーが蓄積され、望ましくない出力が生じる可能性がある。
本稿では,SQuat (Subspace-orthogonal KV cache Quantization)を提案する。
まず、クエリテンソルで区切られたサブスペースを構築し、最も重要なタスク関連情報をキャプチャする。
鍵テンソル量子化の間、(デ)量子化された鍵と元の鍵の差は、この部分空間と直交し、注意機構の出力に対する量子化誤差の影響を最小限に抑える。
SQuatは、モデル微調整を必要とせず、オフライン学習のためのキャリブレーションデータセットも必要とせず、私たちが開発する理論的フレームワークを基盤としています。
数値実験により,本手法はピークメモリを2.17から2.82に削減し,スループットを2.45から3.60に改善し,既存のKVキャッシュ量子化アルゴリズムよりも優れたベンチマークスコアを実現する。
関連論文リスト
- HACK: Homomorphic Acceleration via Compression of the Key-Value Cache for Disaggregated LLM Inference [24.068304021577358]
Disaggregated Large Language Model (LLM) 推論は、計算集約型プリフィルステージとメモリ集約型デコードステージを分離する。
キーバリュー(KV)データを2つのステージ間で送信することは、特に長いプロンプトにおいてボトルネックとなる可能性がある。
分散LDM推論のためのKVキャッシュ(HACK)の圧縮によるホモモルフィック高速化を提案する。
論文 参考訳(メタデータ) (2025-02-05T20:09:51Z) - More Tokens, Lower Precision: Towards the Optimal Token-Precision Trade-off in KV Cache Compression [71.42818367729573]
大規模言語モデル(LLM)では、KVキャッシュのメモリ使用量は推論において重大なボトルネックとなっている。
KVプルーニングやKV量子化を含む主流のKV圧縮法は、主にトークンまたは精度寸法を別々に扱う。
本稿では,KVキャッシュ圧縮におけるトークン精度トレードオフを包括的に検討する。
論文 参考訳(メタデータ) (2024-12-17T09:20:31Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - QJL: 1-Bit Quantized JL Transform for KV Cache Quantization with Zero Overhead [10.067037913589175]
LLMをシリアル化するには、KVキャッシュにキーバリューの埋め込みを格納する必要があるため、かなりのメモリを必要とする。
従来の量子化法は、量子化定数を保存する必要があるため、大きなメモリオーバーヘッドに直面している。
ジョンソン-リンデンシュトラウス変換とサインビット量子化を組み合わせた新しい量子化手法であるQJLを導入する。
論文 参考訳(メタデータ) (2024-06-05T17:42:05Z) - Unlocking Data-free Low-bit Quantization with Matrix Decomposition for KV Cache Compression [87.5604418100301]
キー値(KV)キャッシングは,大規模言語モデルの推論を高速化する重要な手法である。
既存の手法はしばしば精度を損なうか、キャリブレーションのために余分なデータを必要とする。
テンソル分解法に基づく新しいデータフリー低ビット量子化手法である textbfDecoQuant を導入する。
論文 参考訳(メタデータ) (2024-05-21T08:35:10Z) - Keyformer: KV Cache Reduction through Key Tokens Selection for Efficient Generative Inference [2.8241099113277666]
キーフォーマー」は、KVキャッシュサイズとメモリ帯域幅利用に関する課題を軽減する革新的な推論時アプローチである。
我々はKeyformerの性能を,GPT-J,Cerebras-GPT,MPTの3つの基礎モデルで評価した。
論文 参考訳(メタデータ) (2024-03-14T02:42:42Z) - KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [67.9776980972508]
我々はKIVIというチューニング不要な2ビットKVキャッシュ量子化アルゴリズムを開発した。
KIVI は Llama, Falcon, Mistral のモデルを $mathbf2.6times$ less peak memory を使用しながらほぼ同じ品質を維持することができる。
論文 参考訳(メタデータ) (2024-02-05T06:06:47Z) - KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization [67.74400574357472]
LLMは、大きなコンテキストウィンドウを必要とするアプリケーションでの利用が増えており、この大きなコンテキストウィンドウでは、KVキャッシュのアクティベーションが推論時のメモリ消費の主要な要因として表面化している。
量子化はKVキャッシュのアクティベーションを圧縮する上で有望な手法であるが、既存のソリューションは4ビット以下の精度でアクティベーションを正確に表現できない。
我々の研究であるKVQuantは、いくつかの新しい手法を取り入れることで、低精度のKVキャッシュ量子化を容易にする。
論文 参考訳(メタデータ) (2024-01-31T18:58:14Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。