Multiphoton Quantum Interference at Ultracompact Inverse-Designed Multiport Beam Splitter
- URL: http://arxiv.org/abs/2504.00114v1
- Date: Mon, 31 Mar 2025 18:04:07 GMT
- Title: Multiphoton Quantum Interference at Ultracompact Inverse-Designed Multiport Beam Splitter
- Authors: Shiang-Yu Huang, Shreya Kumar, Jeldrik Huster, Yannick Augenstein, Carsten Rockstuhl, Stefanie Barz,
- Abstract summary: We demonstrate multiphoton quantum interference using a topology-optimized tritter with a size of 8.0 $rmmu$m.<n>We also perform heralded three-photon quantum interference with the tritter.<n>Our work confirms successful multiphoton quantum interference at an ultracompact interferometer.
- Score: 0.5937476291232799
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Photonic quantum technologies enter a new phase when realized in photonic integrated circuits, leading to a great advance in practical applications. In the pursuit of high integration density and low circuit complexity, ultracompact devices delivered by topology optimization offer a promising solution to miniaturize these photonic systems even further. However, their potential for quantum experiments has not yet been fully explored despite the constant development. In this work, we demonstrate multiphoton quantum interference using a topology-optimized tritter with a size of 8.0 $\rm{\mu}$m $\times$ 4.5 $\rm{\mu}$m. We characterize the tritter and reconstruct its transfer matrix by means of single- and two-photon statistics. We also perform heralded three-photon quantum interference with the tritter. The measured four-fold coincidence features a peak with visibility of (-47.9$\pm$ 8.6)%, which is in fair agreement with the prediction of -55.8% estimated from the reconstructed transfer matrix. Our work confirms successful multiphoton quantum interference at an ultracompact interferometer and demonstrates the possibility of utilizing topology-optimized multiport interferometers in various fields of quantum technologies.
Related papers
- Tailoring fusion-based photonic quantum computing schemes to quantum emitters [0.0]
Fusion-based quantum computation is a promising quantum computing model where small-sized photonic resource states are simultaneously entangled and measured by fusion gates.
Here, we propose fusion-based architectures tailored to the capabilities and noise models in quantum emitters.
We show that high tolerance to dominant physical error mechanisms can be achieved, with fault-tolerance thresholds of 8% for photon loss, 4% for photon distinguishability between emitters, and spin noise thresholds well above memory-induced errors.
arXiv Detail & Related papers (2024-10-09T11:31:49Z) - Multiphoton interference in a single-spatial-mode quantum walk [0.0]
Multiphoton interference is crucial to many photonic quantum technologies.
Here, we implement a quantum walk in a highly stable, low-loss, multiport interferometer with up to 24 ultrafast time bins.
Our results demonstrate that ultrafast time bins are a promising platform to observe large-scale multiphoton interference.
arXiv Detail & Related papers (2024-09-17T18:14:54Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Fully on-chip photonic turnkey quantum source for entangled qubit/qudit
state generation [0.0]
Integrated photonics has recently become a leading platform for the realization and processing of optical entangled quantum states in chip formats.
Here we demonstrate a fully integrated quantum light source, which overcomes these challenges through the combined integration of a laser cavity.
The hybrid quantum source employs an electrically-pumped InP gain section and a Si$_3$N$_4$ low-loss microring filter system.
arXiv Detail & Related papers (2022-06-17T12:14:21Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Ultra-broadband quadrature squeezing with thin-film lithium niobate
nanophotonics [0.0]
In this letter, we demonstrate squeezed light generation with thin-film lithium niobate integrated photonics.
We measure 0.5-0.09dB quadrature squeezing(3 dB inferred on-chip)
This work represents a significant step towards the on-chip implementation of continuous-variable quantum information processing.
arXiv Detail & Related papers (2021-07-05T19:59:02Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Quantum States of Higher-order Whispering gallery modes in a Silicon
Micro-disk Resonator [3.2330174808784533]
Integrated resonators have been well explored in classical and quantum optics.
We study the quantum interference between photon pairs of the same higher order whispering gallery modes.
Results are promising for achieving higher-dimensional quantum states using the higher-order radial modes of a micro-disk resonator.
arXiv Detail & Related papers (2020-03-15T08:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.