Quantum States of Higher-order Whispering gallery modes in a Silicon
Micro-disk Resonator
- URL: http://arxiv.org/abs/2003.06775v1
- Date: Sun, 15 Mar 2020 08:05:33 GMT
- Title: Quantum States of Higher-order Whispering gallery modes in a Silicon
Micro-disk Resonator
- Authors: Rakesh Ranjan Kumar, Yi Wang, Yaojing Zhang, and Hon Ki Tsang
- Abstract summary: Integrated resonators have been well explored in classical and quantum optics.
We study the quantum interference between photon pairs of the same higher order whispering gallery modes.
Results are promising for achieving higher-dimensional quantum states using the higher-order radial modes of a micro-disk resonator.
- Score: 3.2330174808784533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum states of light in an integrated photonics platform provide an
important resource for quantum information processing and takes advantage of
the scalability and practicality of silicon photonics. Integrated resonators
have been well explored in classical and quantum optics. However, to encode
multiple information through integrated quantum optics requires broader
utilization of the available degrees of freedom on a chip. Here, we studied the
quantum interference between photon pairs of the same higher order whispering
gallery modes populated by spontaneous four-wave mixing in an integrated
silicon micro-disk resonator. The quantum interference between the photon pairs
of the first two quasi-TE0 and quasi-TE1 radial modes was measured to be Vnet ~
98 + 0.8 % and Vnet ~ 94 + 2.6 %, respectively. The results are promising for
achieving higher-dimensional quantum states using the higher-order radial modes
of a micro-disk resonator coupled with an integrated waveguide.
Related papers
- Manipulating multiple optical parametric processes in photonic
topological insulators [6.655289256837963]
We show two distinct edge modes corresponding to different frequency ranges in both sandwich kagome and honeycomb topological designs.
These two topological edge modes enable two types of optical parametric processes through four-wave mixing.
The devices emulating photonic valley-Hall insulators allow the frequency division of two transverse modes.
arXiv Detail & Related papers (2024-01-12T07:29:36Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Fully on-chip photonic turnkey quantum source for entangled qubit/qudit
state generation [0.0]
Integrated photonics has recently become a leading platform for the realization and processing of optical entangled quantum states in chip formats.
Here we demonstrate a fully integrated quantum light source, which overcomes these challenges through the combined integration of a laser cavity.
The hybrid quantum source employs an electrically-pumped InP gain section and a Si$_3$N$_4$ low-loss microring filter system.
arXiv Detail & Related papers (2022-06-17T12:14:21Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - A squeezed quantum microcomb on a chip [0.0]
We demonstrate a deterministic quantum microcomb in a silica microresonator on a silicon chip.
A high-resolution spectroscopy measurement is developed to characterize the frequency equidistance of quantum microcombs.
arXiv Detail & Related papers (2021-03-04T23:13:02Z) - Quantum coherent microwave-optical transduction using high overtone bulk
acoustic resonances [6.467198007912785]
A device capable of converting single quanta of the microwave field to the optical domain is an outstanding endeavour.
We present a new transduction scheme that could satisfy the requirements for quantum coherent bidirectional transduction.
Our scheme relies on an intermediary mechanical mode, a high overtone bulk acoustic resonance (HBAR), to coherently couple microwave and optical photons.
arXiv Detail & Related papers (2021-02-28T11:45:37Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z) - Resonance fluorescence from waveguide-coupled strain-localized
two-dimensional quantum emitters [0.0]
We show a scalable approach using a silicon nitride photonic waveguide to strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode.
Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit.
arXiv Detail & Related papers (2020-02-18T15:45:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.