EMForecaster: A Deep Learning Framework for Time Series Forecasting in Wireless Networks with Distribution-Free Uncertainty Quantification
- URL: http://arxiv.org/abs/2504.00120v1
- Date: Mon, 31 Mar 2025 18:10:08 GMT
- Title: EMForecaster: A Deep Learning Framework for Time Series Forecasting in Wireless Networks with Distribution-Free Uncertainty Quantification
- Authors: Xavier Mootoo, Hina Tabassum, Luca Chiaraviglio,
- Abstract summary: We develop a deep learning (DL) time series forecasting framework referred to as textitEMForecaster.<n> EMForecaster achieves superior performance across diverse datasets, spanning both short-term and long-term prediction horizons.<n>In point forecasting tasks, EMForecaster substantially outperforms current state-of-the-art DL approaches, showing improvements of 53.97% over the Transformer architecture and 38.44% over the average of all baseline models.
- Score: 11.88654374102813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the recent advancements in wireless technologies, forecasting electromagnetic field (EMF) exposure has become critical to enable proactive network spectrum and power allocation, as well as network deployment planning. In this paper, we develop a deep learning (DL) time series forecasting framework referred to as \textit{EMForecaster}. The proposed DL architecture employs patching to process temporal patterns at multiple scales, complemented by reversible instance normalization and mixing operations along both temporal and patch dimensions for efficient feature extraction. We augment {EMForecaster} with a conformal prediction mechanism, which is independent of the data distribution, to enhance the trustworthiness of model predictions via uncertainty quantification of forecasts. This conformal prediction mechanism ensures that the ground truth lies within a prediction interval with target error rate $\alpha$, where $1-\alpha$ is referred to as coverage. However, a trade-off exists, as increasing coverage often results in wider prediction intervals. To address this challenge, we propose a new metric called the \textit{Trade-off Score}, that balances trustworthiness of the forecast (i.e., coverage) and the width of prediction interval. Our experiments demonstrate that EMForecaster achieves superior performance across diverse EMF datasets, spanning both short-term and long-term prediction horizons. In point forecasting tasks, EMForecaster substantially outperforms current state-of-the-art DL approaches, showing improvements of 53.97\% over the Transformer architecture and 38.44\% over the average of all baseline models. EMForecaster also exhibits an excellent balance between prediction interval width and coverage in conformal forecasting, measured by the tradeoff score, showing marked improvements of 24.73\% over the average baseline and 49.17\% over the Transformer architecture.
Related papers
- Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
We introduce Future-Guided Learning, an approach that enhances time-series event forecasting through a dynamic feedback mechanism inspired by predictive coding.<n>Our method involves two models: a detection model that analyzes future data to identify critical events and a forecasting model that predicts these events based on current data.<n>We validate our approach on a variety of tasks, demonstrating a 44.8% increase in AUC-ROC for seizure prediction using EEG data, and a 48.7% reduction in MSE for forecasting in nonlinear dynamical systems.
arXiv Detail & Related papers (2024-10-19T21:22:55Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Reliable Prediction Intervals with Regression Neural Networks [1.569545894307769]
We propose an extension to conventional regression Neural Networks (NNs) for replacing the point predictions they produce with prediction intervals that satisfy a required level of confidence.
Our approach follows a novel machine learning framework, called Conformal Prediction (CP), for assigning reliable confidence measures to predictions.
We evaluate the proposed method on four benchmark datasets and on the problem of predicting Total Electron Content (TEC), which is an important parameter in trans-ionospheric links.
arXiv Detail & Related papers (2023-12-15T08:39:02Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
Graph Neural Networks (GNNs) are powerful machine learning prediction models on graph-structured data.
GNNs lack rigorous uncertainty estimates, limiting their reliable deployment in settings where the cost of errors is significant.
We propose conformalized GNN (CF-GNN), extending conformal prediction (CP) to graph-based models for guaranteed uncertainty estimates.
arXiv Detail & Related papers (2023-05-23T21:38:23Z) - Distributional Drift Adaptation with Temporal Conditional Variational Autoencoder for Multivariate Time Series Forecasting [41.206310481507565]
We propose a novel framework temporal conditional variational autoencoder (TCVAE) to model the dynamic distributional dependencies over time.
The TCVAE infers the dependencies as a temporal conditional distribution to leverage latent variables.
We show the TCVAE's superior robustness and effectiveness over the state-of-the-art MTS forecasting baselines.
arXiv Detail & Related papers (2022-09-01T10:06:22Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Towards physically consistent data-driven weather forecasting:
Integrating data assimilation with equivariance-preserving deep spatial
transformers [2.7998963147546148]
We propose 3 components to integrate with commonly used data-driven weather prediction models.
These components are 1) a deep spatial transformer added to latent space of U-NETs to preserve equivariance, 2) a data-assimilation algorithm to ingest noisy observations and improve the initial conditions for next forecasts, and 3) a multi-time-step algorithm, improving the accuracy of forecasts at short intervals.
arXiv Detail & Related papers (2021-03-16T23:15:00Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.