論文の概要: Why risk matters for protein binder design
- arxiv url: http://arxiv.org/abs/2504.00146v2
- Date: Wed, 02 Apr 2025 11:43:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:18:39.574228
- Title: Why risk matters for protein binder design
- Title(参考訳): タンパク質結合体設計になぜリスクが重要か
- Authors: Tudor-Stefan Cotet, Igor Krawczuk,
- Abstract要約: タンパクバインダー11のフィットネスランドスケープ上で,エンコーディング,代理モデル,獲得関数の72モデルの組み合わせを比較した。
我々は、ランダムなベースラインに対するコールドスタート性能の定量化、最適化キャンペーンのリスク評価、フィットネス閾値に達するために必要な全体的な予算の算出にメトリクスを採用する。
- 参考スコア(独自算出の注目度): 3.5297361401370044
- License:
- Abstract: Bayesian optimization (BO) has recently become more prevalent in protein engineering applications and hence has become a fruitful target of benchmarks. However, current BO comparisons often overlook real-world considerations like risk and cost constraints. In this work, we compare 72 model combinations of encodings, surrogate models, and acquisition functions on 11 protein binder fitness landscapes, specifically from this perspective. Drawing from the portfolio optimization literature, we adopt metrics to quantify the cold-start performance relative to a random baseline, to assess the risk of an optimization campaign, and to calculate the overall budget required to reach a fitness threshold. Our results suggest the existence of Pareto-optimal models on the risk-performance axis, the shift of this preference depending on the landscape explored, and the robust correlation between landscape properties such as epistasis with the average and worst-case model performance. They also highlight that rigorous model selection requires substantial computational and statistical efforts.
- Abstract(参考訳): ベイズ最適化(BO)は、最近、タンパク質工学の応用においてより普及しており、そのためベンチマークの実りある標的となっている。
しかし、現在のBOの比較は、リスクやコストの制約といった現実世界の考慮事項を見落としていることが多い。
本研究は、タンパク質結合体11のフィットネスランドスケープにおけるエンコーディング、代理モデル、獲得関数の72モデルの組み合わせを比較し、特にこの観点から述べる。
ポートフォリオ最適化の文献から、ランダムなベースラインに対するコールドスタート性能の定量化、最適化キャンペーンのリスク評価、フィットネス閾値に達するために必要な全体的な予算の算出にメトリクスを取り入れた。
以上の結果から,リスク・パフォーマンス軸上のパレート・最適モデルの存在,ランドスケープによる嗜好の変化,および平均モデルと最悪のモデル性能とのランドスケープ特性のロバストな相関が示唆された。
また、厳密なモデル選択にはかなりの計算量と統計的努力が必要であることも強調した。
関連論文リスト
- Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
SRモデルの性能法則は,モデルの性能とデータ品質の関係を理論的に調査し,モデル化することを目的としている。
データ品質を評価するために、従来のデータ量メトリクスと比較して、より曖昧なアプローチを示すために、近似エントロピー(ApEn)を提案する。
論文 参考訳(メタデータ) (2024-11-30T10:56:30Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
本稿では,RLによる報酬モデルの最適化により,最先端拡散モデルを微調整するハイブリッド手法を提案する。
我々は、報酬モデルの補間能力を活用し、オフラインデータにおいて最良の設計を上回るアプローチの能力を実証する。
論文 参考訳(メタデータ) (2024-05-30T03:57:29Z) - Risk-Controlling Model Selection via Guided Bayesian Optimization [35.53469358591976]
他の競合するメトリクスに対して有用でありながら、特定のリスクに対するユーザ指定の制限に固執する構成を見つけます。
提案手法は,指定された関心領域に属する最適構成の集合を同定する。
提案手法は,低誤差率,等式予測,スプリアス相関処理,生成モデルにおける速度と歪みの管理,計算コストの削減など,複数のデシダラタを用いたタスクに対する有効性を示す。
論文 参考訳(メタデータ) (2023-12-04T07:29:44Z) - Fine-Tuning Adaptive Stochastic Optimizers: Determining the Optimal Hyperparameter $ε$ via Gradient Magnitude Histogram Analysis [0.7366405857677226]
我々は、損失の大きさの経験的確率密度関数に基づく新しい枠組みを導入し、これを「緩やかな等級ヒストグラム」と呼ぶ。
そこで本稿では, 最適安全のための精密かつ高精度な探索空間を自動推定するために, 勾配等級ヒストグラムを用いた新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-20T04:34:19Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
本稿では, 専門家エージェントから, 一定の有限個の実演において観測された動作を過小評価する報酬と環境力学の構造を復元することを目的とする。
タスクを実行するための正確な専門知識モデルは、臨床的意思決定や自律運転のような安全に敏感な応用に応用できる。
論文 参考訳(メタデータ) (2023-02-15T04:14:20Z) - A Nested Weighted Tchebycheff Multi-Objective Bayesian Optimization
Approach for Flexibility of Unknown Utopia Estimation in Expensive Black-box
Design Problems [0.0]
既存の研究では、未知のユートピアを定式化するための重み付きTchebycheff MOBOアプローチが実証されている。
モデルアンサンブルから回帰モデル選択手順を構築する,ネスト重み付きTchebycheff MOBOフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-16T00:44:06Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Correlation Robust Influence Maximization [5.508091917582913]
本稿では,影響問題に対する分布的ロバストなモデルを提案する。
最悪の相関の下での期待される影響を最大化する種集合を求める。
この最悪の影響を効率的に計算できることが示される。
論文 参考訳(メタデータ) (2020-10-24T04:43:56Z) - Kidney Exchange with Inhomogeneous Edge Existence Uncertainty [33.17472228570093]
我々は一致したサイクルとチェーンパッキングの問題の最大化を目指しており、そこでは障害の端まで有向グラフ内の構造を識別することを目的としている。
ユナイテッド・フォー・シェアリング(SUNO)のデータに対する我々のアプローチは、SAAベースの手法と同じ重み付けでより良いパフォーマンスを提供する。
論文 参考訳(メタデータ) (2020-07-07T04:08:39Z) - Nonparametric Estimation in the Dynamic Bradley-Terry Model [69.70604365861121]
カーネルのスムース化に依存する新しい推定器を開発し、時間とともにペア比較を前処理する。
モデルに依存しない設定における推定誤差と余剰リスクの両方について時間変化のオラクル境界を導出する。
論文 参考訳(メタデータ) (2020-02-28T21:52:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。