$\textit{Agents Under Siege}$: Breaking Pragmatic Multi-Agent LLM Systems with Optimized Prompt Attacks
- URL: http://arxiv.org/abs/2504.00218v1
- Date: Mon, 31 Mar 2025 20:43:56 GMT
- Title: $\textit{Agents Under Siege}$: Breaking Pragmatic Multi-Agent LLM Systems with Optimized Prompt Attacks
- Authors: Rana Muhammad Shahroz Khan, Zhen Tan, Sukwon Yun, Charles Flemming, Tianlong Chen,
- Abstract summary: Multi-agent Large Language Model (LLM) systems create novel adversarial risks because their behavior depends on communication between agents and decentralized reasoning.<n>In this work, we innovatively focus on attacking pragmatic systems that have constrains such as limited token bandwidth, latency between message delivery, and defense mechanisms.<n>We design a $textitpermutation-invariant adversarial attack$ that optimize prompt distribution across latency and bandwidth-constraint network topologies to bypass distributed safety mechanisms.
- Score: 32.42704787246349
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most discussions about Large Language Model (LLM) safety have focused on single-agent settings but multi-agent LLM systems now create novel adversarial risks because their behavior depends on communication between agents and decentralized reasoning. In this work, we innovatively focus on attacking pragmatic systems that have constrains such as limited token bandwidth, latency between message delivery, and defense mechanisms. We design a $\textit{permutation-invariant adversarial attack}$ that optimizes prompt distribution across latency and bandwidth-constraint network topologies to bypass distributed safety mechanisms within the system. Formulating the attack path as a problem of $\textit{maximum-flow minimum-cost}$, coupled with the novel $\textit{Permutation-Invariant Evasion Loss (PIEL)}$, we leverage graph-based optimization to maximize attack success rate while minimizing detection risk. Evaluating across models including $\texttt{Llama}$, $\texttt{Mistral}$, $\texttt{Gemma}$, $\texttt{DeepSeek}$ and other variants on various datasets like $\texttt{JailBreakBench}$ and $\texttt{AdversarialBench}$, our method outperforms conventional attacks by up to $7\times$, exposing critical vulnerabilities in multi-agent systems. Moreover, we demonstrate that existing defenses, including variants of $\texttt{Llama-Guard}$ and $\texttt{PromptGuard}$, fail to prohibit our attack, emphasizing the urgent need for multi-agent specific safety mechanisms.
Related papers
- Cooperative Multi-Agent Constrained Stochastic Linear Bandits [2.099922236065961]
A network of $N$ agents communicate locally to minimize their collective regret while keeping their expected cost under a specified threshold $tau$.
We propose a safe distributed upper confidence bound algorithm, so called textitMA-OPLB, and establish a high probability bound on its $T$-round regret.
We show that our regret bound is of order $ mathcalOleft(fracdtau-c_0fraclog(NT)2sqrtNsqrtTlog (1/|lambda|)
arXiv Detail & Related papers (2024-10-22T19:34:53Z) - Cut the Crap: An Economical Communication Pipeline for LLM-based Multi-Agent Systems [42.137278756052595]
$texttAgentPrune$ can seamlessly integrate into mainstream multi-agent systems.
textbf(I) integrates seamlessly into existing multi-agent frameworks with $28.1%sim72.8%downarrow$ token reduction.
textbf(III) successfully defend against two types of agent-based adversarial attacks with $3.5%sim10.8%uparrow$ performance boost.
arXiv Detail & Related papers (2024-10-03T14:14:31Z) - On the Resilience of LLM-Based Multi-Agent Collaboration with Faulty Agents [58.79302663733703]
Large language model-based multi-agent systems have shown great abilities across various tasks due to the collaboration of expert agents.<n>However, the impact of clumsy or even malicious agents, on the overall performance of the system remains underexplored.<n>This paper investigates what is the resilience of various system structures under faulty agents.
arXiv Detail & Related papers (2024-08-02T03:25:20Z) - Cross-modality Information Check for Detecting Jailbreaking in Multimodal Large Language Models [17.663550432103534]
Multimodal Large Language Models (MLLMs) extend the capacity of LLMs to understand multimodal information comprehensively.
These models are susceptible to jailbreak attacks, where malicious users can break the safety alignment of the target model and generate misleading and harmful answers.
We propose Cross-modality Information DEtectoR (CIDER), a plug-and-play jailbreaking detector designed to identify maliciously perturbed image inputs.
arXiv Detail & Related papers (2024-07-31T15:02:46Z) - Federated Combinatorial Multi-Agent Multi-Armed Bandits [79.1700188160944]
This paper introduces a federated learning framework tailored for online optimization with bandit.
In this setting, agents subsets of arms, observe noisy rewards for these subsets without accessing individual arm information, and can cooperate and share information at specific intervals.
arXiv Detail & Related papers (2024-05-09T17:40:09Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
We propose textbfAdaptive textbfShield Prompting, which prepends inputs with defense prompts to defend MLLMs against structure-based jailbreak attacks.
Our methods can consistently improve MLLMs' robustness against structure-based jailbreak attacks.
arXiv Detail & Related papers (2024-03-14T15:57:13Z) - SynGhost: Invisible and Universal Task-agnostic Backdoor Attack via Syntactic Transfer [22.77860269955347]
Pre-training suffers from task-agnostic backdoor attacks due to vulnerabilities in data and training mechanisms.
We propose $mathttSynGhost$, an invisible and universal task-agnostic backdoor attack via syntactic transfer.
$mathttSynGhost$ adaptively selects optimal targets based on contrastive learning, creating a uniform distribution in the pre-training space.
arXiv Detail & Related papers (2024-02-29T08:20:49Z) - A Simple and Provably Efficient Algorithm for Asynchronous Federated
Contextual Linear Bandits [77.09836892653176]
We study federated contextual linear bandits, where $M$ agents cooperate with each other to solve a global contextual linear bandit problem with the help of a central server.
We consider the asynchronous setting, where all agents work independently and the communication between one agent and the server will not trigger other agents' communication.
We prove that the regret of textttFedLinUCB is bounded by $tildeO(dsqrtsum_m=1M T_m)$ and the communication complexity is $tildeO(dM
arXiv Detail & Related papers (2022-07-07T06:16:19Z) - Towards Variable-Length Textual Adversarial Attacks [68.27995111870712]
It is non-trivial to conduct textual adversarial attacks on natural language processing tasks due to the discreteness of data.
In this paper, we propose variable-length textual adversarial attacks(VL-Attack)
Our method can achieve $33.18$ BLEU score on IWSLT14 German-English translation, achieving an improvement of $1.47$ over the baseline model.
arXiv Detail & Related papers (2021-04-16T14:37:27Z) - Composite Adversarial Attacks [57.293211764569996]
Adversarial attack is a technique for deceiving Machine Learning (ML) models.
In this paper, a new procedure called Composite Adrial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms.
CAA beats 10 top attackers on 11 diverse defenses with less elapsed time.
arXiv Detail & Related papers (2020-12-10T03:21:16Z) - Towards Defending Multiple $\ell_p$-norm Bounded Adversarial
Perturbations via Gated Batch Normalization [120.99395850108422]
Existing adversarial defenses typically improve model robustness against individual specific perturbations.
Some recent methods improve model robustness against adversarial attacks in multiple $ell_p$ balls, but their performance against each perturbation type is still far from satisfactory.
We propose Gated Batch Normalization (GBN) to adversarially train a perturbation-invariant predictor for defending multiple $ell_p bounded adversarial perturbations.
arXiv Detail & Related papers (2020-12-03T02:26:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.