Quantum computation of a quasiparticle band structure with the quantum-selected configuration interaction
- URL: http://arxiv.org/abs/2504.00309v1
- Date: Tue, 01 Apr 2025 00:25:19 GMT
- Title: Quantum computation of a quasiparticle band structure with the quantum-selected configuration interaction
- Authors: Takahiro Ohgoe, Hokuto Iwakiri, Kazuhide Ichikawa, Sho Koh, Masaya Kohda,
- Abstract summary: We propose a hybrid approach that combines the quantum subspace expansion (QSE) method with the quantum-selected configuration interaction (QSCI) method for calculating quasiparticle band structures.<n>We demonstrate the quantum computation of the quasiparticle band structure of a silicon using 16 qubits on an IBM quantum processor.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quasiparticle band structures are fundamental for understanding strongly correlated electron systems. While solving these structures accurately on classical computers is challenging, quantum computing offers a promising alternative. Specifically, the quantum subspace expansion (QSE) method, combined with the variational quantum eigensolver (VQE), provides a quantum algorithm for calculating quasiparticle band structures. However, optimizing the variational parameters in VQE becomes increasingly difficult as the system size grows, due to device noise, statistical noise, and the barren plateau problem. To address these challenges, we propose a hybrid approach that combines QSE with the quantum-selected configuration interaction (QSCI) method for calculating quasiparticle band structures. QSCI may leverage the VQE ansatz as an input state but, unlike the standard VQE, it does not require full optimization of the variational parameters, making it more scalable for larger quantum systems. Based on this approach, we demonstrate the quantum computation of the quasiparticle band structure of a silicon using 16 qubits on an IBM quantum processor.
Related papers
- Enhancing variational quantum algorithms by balancing training on classical and quantum hardware [1.8377902806196762]
Variational quantum algorithms (VQAs) have the potential to provide a near-term route to quantum utility or advantage.<n>VQAs have been proposed for a multitude of tasks such as ground-state estimation.<n>There remain major challenges in its trainability and resource costs on quantum hardware.
arXiv Detail & Related papers (2025-03-20T17:17:58Z) - Benchmarking Variational Quantum Eigensolvers for Entanglement Detection in Many-Body Hamiltonian Ground States [37.69303106863453]
Variational quantum algorithms (VQAs) have emerged in recent years as a promise to obtain quantum advantage.
We use a specific class of VQA named variational quantum eigensolvers (VQEs) to benchmark them at entanglement witnessing and entangled ground state detection.
Quantum circuits whose structure is inspired by the Hamiltonian interactions presented better results on cost function estimation than problem-agnostic circuits.
arXiv Detail & Related papers (2024-07-05T12:06:40Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Variational quantum eigensolver for closed-shell molecules with
non-bosonic corrections [6.3235499003745455]
We introduce a simple correction scheme in the electron correlation model approximated by the geometrical mean of the bosonic terms.
We find our non-bosonic correction method reaches reliable quantum chemistry simulations at least for the tested systems.
arXiv Detail & Related papers (2023-10-11T16:47:45Z) - Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
The quantum equation of motion (qEOM) is a hybrid quantum-classical algorithm for computing excitation properties of a fermionic many-body system.
We demonstrate explicitly that the qEOM exhibits a quantum benefit due to the independence of the number of required quantum measurements.
arXiv Detail & Related papers (2023-09-18T22:10:26Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Orbital-optimized pair-correlated electron simulations on trapped-ion
quantum computers [0.471876092032107]
Variational quantum eigensolvers (VQE) are among the most promising approaches for solving electronic structure problems on quantum computers.
A critical challenge for VQE in practice is that one needs to strike a balance between the expressivity of the VQE ansatz versus the number of quantum gates required to implement the ansatz.
We run end-to-end VQE algorithms with up to 12 qubits and 72 variational parameters - the largest full VQE simulation with a correlated wave function on quantum hardware.
arXiv Detail & Related papers (2022-12-05T18:40:54Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - A semi-agnostic ansatz with variable structure for quantum machine learning [0.3774866290142281]
Variational Quantum Algorithms (VQAs) offer a powerful, flexible paradigm for programming near-term quantum computers.
We present a variable structure approach to build ansatzes for VQAs.
We employ VAns in the variational quantum eigensolver for condensed matter and quantum chemistry applications.
arXiv Detail & Related papers (2021-03-11T14:58:40Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.