Leveraging Contrast Information for Efficient Document Shadow Removal
- URL: http://arxiv.org/abs/2504.00385v1
- Date: Tue, 01 Apr 2025 03:06:20 GMT
- Title: Leveraging Contrast Information for Efficient Document Shadow Removal
- Authors: Yifan Liu, Jiancheng Huang, Na Liu, Mingfu Yan, Yi Huang, Shifeng Chen,
- Abstract summary: Document shadows are a major obstacle in the digitization process.<n>We propose an end-to-end document shadow removal method guided by contrast representation.
- Score: 15.35209972174416
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Document shadows are a major obstacle in the digitization process. Due to the dense information in text and patterns covered by shadows, document shadow removal requires specialized methods. Existing document shadow removal methods, although showing some progress, still rely on additional information such as shadow masks or lack generalization and effectiveness across different shadow scenarios. This often results in incomplete shadow removal or loss of original document content and tones. Moreover, these methods tend to underutilize the information present in the original shadowed document image. In this paper, we refocus our approach on the document images themselves, which inherently contain rich information.We propose an end-to-end document shadow removal method guided by contrast representation, following a coarse-to-fine refinement approach. By extracting document contrast information, we can effectively and quickly locate shadow shapes and positions without the need for additional masks. This information is then integrated into the refined shadow removal process, providing better guidance for network-based removal and feature fusion. Extensive qualitative and quantitative experiments show that our method achieves state-of-the-art performance.
Related papers
- MetaShadow: Object-Centered Shadow Detection, Removal, and Synthesis [64.00425120075045]
Shadows are often under-considered or even ignored in image editing applications, limiting the realism of the edited results.<n>In this paper, we introduce MetaShadow, a three-in-one versatile framework that enables detection, removal, and controllable synthesis of shadows in natural images in an object-centered fashion.
arXiv Detail & Related papers (2024-12-03T18:04:42Z) - Shadow Removal Refinement via Material-Consistent Shadow Edges [33.8383848078524]
On both sides of shadow edges traversing regions with the same material, the original color and textures should be the same if the shadow is removed properly.
We fine-tune SAM, an image segmentation foundation model, to produce a shadow-invariant segmentation and then extract material-consistent shadow edges.
We demonstrate the effectiveness of our method in improving shadow removal results on more challenging, in-the-wild images.
arXiv Detail & Related papers (2024-09-10T20:16:28Z) - Single-Image Shadow Removal Using Deep Learning: A Comprehensive Survey [78.84004293081631]
The patterns of shadows are arbitrary, varied, and often have highly complex trace structures.
The degradation caused by shadows is spatially non-uniform, resulting in inconsistencies in illumination and color between shadow and non-shadow areas.
Recent developments in this field are primarily driven by deep learning-based solutions.
arXiv Detail & Related papers (2024-07-11T20:58:38Z) - Latent Feature-Guided Diffusion Models for Shadow Removal [50.02857194218859]
We propose the use of diffusion models as they offer a promising approach to gradually refine the details of shadow regions during the diffusion process.
Our method improves this process by conditioning on a learned latent feature space that inherits the characteristics of shadow-free images.
We demonstrate the effectiveness of our approach which outperforms the previous best method by 13% in terms of RMSE on the AISTD dataset.
arXiv Detail & Related papers (2023-12-04T18:59:55Z) - Progressive Recurrent Network for Shadow Removal [99.1928825224358]
Single-image shadow removal is a significant task that is still unresolved.
Most existing deep learning-based approaches attempt to remove the shadow directly, which can not deal with the shadow well.
We propose a simple but effective Progressive Recurrent Network (PRNet) to remove the shadow progressively.
arXiv Detail & Related papers (2023-11-01T11:42:45Z) - DocDeshadower: Frequency-Aware Transformer for Document Shadow Removal [36.182923899021496]
Current shadow removal techniques face limitations in handling varying shadow intensities and preserving document details.
We propose DocDeshadower, a novel multi-frequency Transformer-based model built upon the Laplacian Pyramid.
Experiments demonstrate DocDeshadower's superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-07-28T05:35:37Z) - Leveraging Inpainting for Single-Image Shadow Removal [29.679542372017373]
In this work, we find that pretraining shadow removal networks on the image inpainting dataset can reduce the shadow remnants significantly.
A naive encoder-decoder network gets competitive restoration quality w.r.t. the state-of-the-art methods via only 10% shadow & shadow-free image pairs.
Inspired by these observations, we formulate shadow removal as an adaptive fusion task that takes advantage of both shadow removal and image inpainting.
arXiv Detail & Related papers (2023-02-10T16:21:07Z) - ShaDocNet: Learning Spatial-Aware Tokens in Transformer for Document
Shadow Removal [53.01990632289937]
We propose a Transformer-based model for document shadow removal.
It uses shadow context encoding and decoding in both shadow and shadow-free regions.
arXiv Detail & Related papers (2022-11-30T01:46:29Z) - DeS3: Adaptive Attention-driven Self and Soft Shadow Removal using ViT Similarity [54.831083157152136]
We present a method that removes hard, soft and self shadows based on adaptive attention and ViT similarity.
Our method outperforms state-of-the-art methods on the SRD, AISTD, LRSS, USR and UIUC datasets.
arXiv Detail & Related papers (2022-11-15T12:15:29Z) - Self-Supervised Shadow Removal [130.6657167667636]
We propose an unsupervised single image shadow removal solution via self-supervised learning by using a conditioned mask.
In contrast to existing literature, we do not require paired shadowed and shadow-free images, instead we rely on self-supervision and jointly learn deep models to remove and add shadows to images.
arXiv Detail & Related papers (2020-10-22T11:33:41Z) - From Shadow Segmentation to Shadow Removal [34.762493656937366]
The requirement for paired shadow and shadow-free images limits the size and diversity of shadow removal datasets.
We propose a shadow removal method that can be trained using only shadow and non-shadow patches cropped from the shadow images themselves.
arXiv Detail & Related papers (2020-08-01T14:00:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.