論文の概要: Communication-Efficient l_0 Penalized Least Square
- arxiv url: http://arxiv.org/abs/2504.00722v1
- Date: Tue, 01 Apr 2025 12:32:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 15:43:09.079372
- Title: Communication-Efficient l_0 Penalized Least Square
- Title(参考訳): 通信効率の良いl_0ペナルティ最小方形
- Authors: Chenqi Gong, Hu Yang,
- Abstract要約: 大規模データを用いた高次元疎線形回帰モデルに対する通信効率の良いペナル化回帰アルゴリズムを提案する。
このアプローチには、拡張サポート検出とルート探索アルゴリズムに基づく、CESDARアルゴリズムという、最適化された分散システム通信アルゴリズムが組み込まれている。
- 参考スコア(独自算出の注目度): 9.605924781372849
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a communication-efficient penalized regression algorithm for high-dimensional sparse linear regression models with massive data. This approach incorporates an optimized distributed system communication algorithm, named CESDAR algorithm, based on the Enhanced Support Detection and Root finding algorithm. The CESDAR algorithm leverages data distributed across multiple machines to compute and update the active set and introduces the communication-efficient surrogate likelihood framework to approximate the optimal solution for the full sample on the active set, resulting in the avoidance of raw data transmission, which enhances privacy and data security, while significantly improving algorithm execution speed and substantially reducing communication costs. Notably, this approach achieves the same statistical accuracy as the global estimator. Furthermore, this paper explores an extended version of CESDAR and an adaptive version of CESDAR to enhance algorithmic speed and optimize parameter selection, respectively. Simulations and real data benchmarks experiments demonstrate the efficiency and accuracy of the CESDAR algorithm.
- Abstract(参考訳): 本稿では,大容量データを用いた高次元疎線形回帰モデルに対する通信効率の良いペナル化回帰アルゴリズムを提案する。
このアプローチは、拡張サポート検出とルート探索アルゴリズムに基づく、CESDARアルゴリズムと呼ばれる最適化された分散システム通信アルゴリズムを取り入れている。
CESDARアルゴリズムは、複数のマシンに分散したデータを活用して、アクティブセットを計算および更新し、通信効率の高いサロゲート確率フレームワークを導入し、アクティブセットの全サンプルに対する最適解を近似し、結果として、プライバシとデータセキュリティを向上し、アルゴリズムの実行速度を大幅に改善し、通信コストを大幅に削減する生データ送信を回避する。
特に、この手法は、大域的推定器と同じ統計的精度を達成する。
さらに,アルゴリズムの高速化とパラメータ選択の最適化を目的として,CESDARの拡張版とCESDARの適応版について検討する。
シミュレーションと実データベンチマーク実験は、CESDARアルゴリズムの効率と精度を実証している。
関連論文リスト
- Stabilized Proximal-Point Methods for Federated Optimization [20.30761752651984]
非加速アルゴリズムの通信複雑性は、分散近位点アルゴリズムであるDANEによって達成される。
ハイブリッド投影近点法に着想を得て,新しい分散アルゴリズムS-DANEを提案する。
S-DANEは、S-DANEとして良好な局所計算効率を保ちながら、通信の複雑さを最もよく表すことを示す。
論文 参考訳(メタデータ) (2024-07-09T17:56:29Z) - Optimizing the Optimal Weighted Average: Efficient Distributed Sparse Classification [50.406127962933915]
ACOWAは、小さなランタイムの増加とともに、顕著に優れた近似品質を達成するための追加の通信を可能にする。
その結果、ACOWAは経験的リスク最小化に忠実で、他の分散アルゴリズムよりもかなり高い精度で解が得られることがわかった。
論文 参考訳(メタデータ) (2024-06-03T19:43:06Z) - Over-the-Air Federated Learning via Second-Order Optimization [37.594140209854906]
フェデレートラーニング(FL)は、無線ネットワーク上でのタスク指向のデータトラフィックを、限られた無線リソースによって引き起こす可能性がある。
本稿では,通信ラウンドを同時に削減し,低レイテンシなグローバルモデルアグリゲーションを実現するために,空対2次フェデレーション最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-29T12:39:23Z) - Automatic tuning of hyper-parameters of reinforcement learning
algorithms using Bayesian optimization with behavioral cloning [0.0]
強化学習(RL)では、学習エージェントが収集したデータの情報内容は多くのハイパーパラメータの設定に依存する。
本研究では,ベイズ最適化を用いた自律的ハイパーパラメータ設定手法を提案する。
実験は、他の手作業による調整や最適化ベースのアプローチと比較して、有望な結果を示している。
論文 参考訳(メタデータ) (2021-12-15T13:10:44Z) - Dual Optimization for Kolmogorov Model Learning Using Enhanced Gradient
Descent [8.714458129632158]
コルモゴロフモデル(コルモゴロフモデル、英: Kolmogorov model、KM)は、確率変数の集合の基本的な確率構造を学ぶための解釈可能で予測可能な表現手法である。
正規化双対最適化と拡張勾配降下法(GD)を併用した計算スケーラブルなKM学習アルゴリズムを提案する。
提案したKM学習アルゴリズムを用いた論理的関係マイニングの精度は80%以上である。
論文 参考訳(メタデータ) (2021-07-11T10:33:02Z) - Learning Centric Power Allocation for Edge Intelligence [84.16832516799289]
分散データを収集し、エッジで機械学習を実行するエッジインテリジェンスが提案されている。
本稿では,経験的分類誤差モデルに基づいて無線リソースを割り当てるLCPA法を提案する。
実験の結果,提案したLCPAアルゴリズムは,他のパワーアロケーションアルゴリズムよりも有意に優れていた。
論文 参考訳(メタデータ) (2020-07-21T07:02:07Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
フェデレートラーニング(FL)は、分散データから学ぶための一般的なパラダイムになっています。
クラウドに移行することなく、さまざまなデバイスのデータを効果的に活用するために、Federated Averaging(FedAvg)などのアルゴリズムでは、"Computation then aggregate"(CTA)モデルを採用している。
論文 参考訳(メタデータ) (2020-05-22T23:07:42Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
本稿では,ミリ波通信網における車とセルの関連性について検討する。
まず、ユーザ状態(VU)問題を離散的な非車両関連最適化問題として定式化する。
提案手法は,複数のベースライン設計と比較して,ユーザの複雑性とVUEの20%削減の合計で最大15%のゲインが得られる。
論文 参考訳(メタデータ) (2020-01-22T08:51:05Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
本稿では,アップリンク無線通信システムにおけるチャネル割り当て問題について検討する。
我々の目標は、整数チャネル割り当て制約を受ける全ユーザの総和率を最大化することです。
計算複雑性が高いため、機械学習アプローチは計算効率のよい解を得るために用いられる。
論文 参考訳(メタデータ) (2020-01-12T15:54:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。