論文の概要: Personality-Driven Decision-Making in LLM-Based Autonomous Agents
- arxiv url: http://arxiv.org/abs/2504.00727v1
- Date: Tue, 01 Apr 2025 12:36:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 15:43:09.083092
- Title: Personality-Driven Decision-Making in LLM-Based Autonomous Agents
- Title(参考訳): LLMに基づく自律エージェントのパーソナリティ駆動型意思決定
- Authors: Lewis Newsham, Daniel Prince,
- Abstract要約: 本研究では,人格特性がタスク選択にどう影響するかを計測し,評価する手法を提案する。
以上の結果から,OCEAN属性に整合したタスク選択パターンが明らかとなり,プロアクティブサイバー防御戦略において,高い信頼性の認知エージェントを設計できる可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.276240219662896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The embedding of Large Language Models (LLMs) into autonomous agents is a rapidly developing field which enables dynamic, configurable behaviours without the need for extensive domain-specific training. In our previous work, we introduced SANDMAN, a Deceptive Agent architecture leveraging the Five-Factor OCEAN personality model, demonstrating that personality induction significantly influences agent task planning. Building on these findings, this study presents a novel method for measuring and evaluating how induced personality traits affect task selection processes - specifically planning, scheduling, and decision-making - in LLM-based agents. Our results reveal distinct task-selection patterns aligned with induced OCEAN attributes, underscoring the feasibility of designing highly plausible Deceptive Agents for proactive cyber defense strategies.
- Abstract(参考訳): 大規模言語モデル(LLM)を自律エージェントに組み込むことは、ドメイン固有の広範なトレーニングを必要とせずに動的かつ構成可能な動作を可能にする、急速に発展する分野である。
本研究では,5要素OCEANパーソナリティモデルを利用した認知エージェントアーキテクチャであるSANDMANを導入し,パーソナリティ誘導がエージェントタスク計画に大きく影響を与えることを示した。
本研究は, LLMエージェントのタスク選択過程(特に計画, スケジューリング, 意思決定)に対して, 人格特性がどう影響するかを計測し, 評価するための新しい手法を提案する。
以上の結果から,OCEAN属性に整合したタスク選択パターンが明らかとなり,プロアクティブサイバー防御戦略において,高い信頼性の認知エージェントを設計できる可能性が示唆された。
関連論文リスト
- Agentic Knowledgeable Self-awareness [79.25908923383776]
KnowSelfはデータ中心のアプローチで、人間のような知識のある自己認識を持つエージェントを応用する。
我々の実験により、KnowSelfは、外部知識を最小限に使用して、様々なタスクやモデルにおいて、様々な強力なベースラインを達成できることが実証された。
論文 参考訳(メタデータ) (2025-04-04T16:03:38Z) - Inducing Personality in LLM-Based Honeypot Agents: Measuring the Effect on Human-Like Agenda Generation [0.22499166814992438]
SANDMANは、Language Agentsを利用して、説得力のある人間のシミュラクラをエミュレートするサイバー詐欺のアーキテクチャである。
私たちの「認知エージェント」は、攻撃者との高忠実なエンゲージメントのために設計された、先進的なサイバーデコイとして機能します。
論文 参考訳(メタデータ) (2025-03-25T15:16:35Z) - Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
我々は、人間の指示なしにタスクを予測および開始できるプロアクティブエージェントを開発するという課題に取り組む。
まず,実世界の人的活動を収集し,前向きなタスク予測を生成する。
これらの予測は、ヒトのアノテータによって受け入れられるか拒否されるかのどちらかとしてラベル付けされる。
ラベル付きデータは、人間の判断をシミュレートする報酬モデルをトレーニングするために使用される。
論文 参考訳(メタデータ) (2024-10-16T08:24:09Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
大規模な事前訓練されたモデルでは、推論や計画タスクのパフォーマンスがますます向上している。
我々は、直接的または間接的に、意思決定ポリシーを作成する能力を評価する。
未知の力学を持つ環境において、合成データを用いた微調整LDMが報酬モデリング能力を大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2024-10-08T03:12:57Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - AgentGen: Enhancing Planning Abilities for Large Language Model based Agent via Environment and Task Generation [81.32722475387364]
大規模言語モデルに基づくエージェントが注目され、ますます人気が高まっている。
計画能力は LLM ベースのエージェントの重要な構成要素であり、通常は初期状態から望ましい目標を達成する必要がある。
近年の研究では、専門家レベルの軌跡を指導訓練用LLMに活用することで、効果的に計画能力を向上させることが示されている。
論文 参考訳(メタデータ) (2024-08-01T17:59:46Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - TPTU: Large Language Model-based AI Agents for Task Planning and Tool
Usage [28.554981886052953]
大規模言語モデル(LLM)は、様々な現実世界のアプリケーションのための強力なツールとして登場した。
LLMの本質的な生成能力は、その長所にもかかわらず、複雑なタスクを扱うには不十分である。
本稿では,LLMベースのAIエージェントに適した構造化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-07T09:22:03Z) - Reflexion: Language Agents with Verbal Reinforcement Learning [44.85337947858337]
リフレクション(Reflexion)は、ウェイトを更新するのではなく、言語フィードバックによって言語エージェントを強化する新しいフレームワークである。
様々なタイプ(スカラー値または自由形式言語)とフィードバック信号のソース(外部または内部シミュレート)を組み込むのに十分な柔軟性がある。
例えば、ReflexionはHumanEvalのコーディングベンチマークで91%のパス@1精度を達成した。
論文 参考訳(メタデータ) (2023-03-20T18:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。