論文の概要: Inducing Personality in LLM-Based Honeypot Agents: Measuring the Effect on Human-Like Agenda Generation
- arxiv url: http://arxiv.org/abs/2503.19752v1
- Date: Tue, 25 Mar 2025 15:16:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:54:21.616592
- Title: Inducing Personality in LLM-Based Honeypot Agents: Measuring the Effect on Human-Like Agenda Generation
- Title(参考訳): LLM系ハニーポット剤のパーソナリティ誘導:ヒト様アジェンダ生成に及ぼす効果の測定
- Authors: Lewis Newsham, Ryan Hyland, Daniel Prince,
- Abstract要約: SANDMANは、Language Agentsを利用して、説得力のある人間のシミュラクラをエミュレートするサイバー詐欺のアーキテクチャである。
私たちの「認知エージェント」は、攻撃者との高忠実なエンゲージメントのために設計された、先進的なサイバーデコイとして機能します。
- 参考スコア(独自算出の注目度): 0.22499166814992438
- License:
- Abstract: This paper presents SANDMAN, an architecture for cyber deception that leverages Language Agents to emulate convincing human simulacra. Our 'Deceptive Agents' serve as advanced cyber decoys, designed for high-fidelity engagement with attackers by extending the observation period of attack behaviours. Through experimentation, measurement, and analysis, we demonstrate how a prompt schema based on the five-factor model of personality systematically induces distinct 'personalities' in Large Language Models. Our results highlight the feasibility of persona-driven Language Agents for generating diverse, realistic behaviours, ultimately improving cyber deception strategies.
- Abstract(参考訳): 本稿では、Language Agentsを利用して、説得力のある人間のシミュラクラをエミュレートするサイバー詐欺のアーキテクチャであるSANDMANを提案する。
我々の「認知エージェント」は、攻撃行動の観察期間を延長することにより、攻撃者との高忠実なエンゲージメントのために設計された高度なサイバーデコイとして機能する。
実験,測定,分析を通じて,人格の5要素モデルに基づく素早いスキーマが,大規模言語モデルにおいて「個人性」を体系的に引き起こすことを示す。
本結果は,ペルソナ駆動型言語エージェントが多様で現実的な行動を生成し,究極的にはサイバー詐欺戦略を改善する可能性を強調した。
関連論文リスト
- Build An Influential Bot In Social Media Simulations With Large Language Models [7.242974711907219]
本研究では,エージェントベースモデリング(ABM)とLarge Language Models(LLM)を組み合わせた新しいシミュレーション環境を提案する。
本稿では,Reinforcement Learning (RL) の革新的応用として,世論指導者形成の過程を再現する手法を提案する。
以上の結果から,行動空間の制限と自己観察の導入が,世論指導層形成の安定に寄与する重要な要因であることが示唆された。
論文 参考訳(メタデータ) (2024-11-29T11:37:12Z) - Generative Agent Simulations of 1,000 People [56.82159813294894]
本稿では,1,052人の実人の態度と行動をシミュレートする新しいエージェントアーキテクチャを提案する。
生成エージェントは一般社会調査の参加者の回答を85%の精度で再現する。
我々のアーキテクチャは、人種的およびイデオロギー的グループにおける正確さのバイアスを、人口統計学的記述のエージェントと比較して低減する。
論文 参考訳(メタデータ) (2024-11-15T11:14:34Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Human Simulacra: Benchmarking the Personification of Large Language Models [38.21708264569801]
大規模言語モデル(LLM)は、人間の知性の側面を忠実に模倣するシステムとして認識されている。
本稿では,仮想キャラクタのライフストーリーをゼロから構築するためのフレームワークを提案する。
実験により, 構築したシミュラクラは, 対象キャラクタと一致した擬人化応答を生成できることが実証された。
論文 参考訳(メタデータ) (2024-02-28T09:11:14Z) - LLMs Simulate Big Five Personality Traits: Further Evidence [51.13560635563004]
Llama2, GPT4, Mixtralでシミュレートされた性格特性を解析した。
このことは、パーソナリティ特性をシミュレートするLLMの能力のより広範な理解に寄与する。
論文 参考訳(メタデータ) (2024-01-31T13:45:25Z) - Understanding Your Agent: Leveraging Large Language Models for Behavior
Explanation [7.647395374489533]
本研究では,状態や行動の観察のみに基づいて,エージェントの行動に関する自然言語説明を生成する手法を提案する。
提案手法は,人間ドメインの専門家が作成したものと同じくらい役立つ説明を生成する。
論文 参考訳(メタデータ) (2023-11-29T20:16:23Z) - Explaining Agent Behavior with Large Language Models [7.128139268426959]
本研究では,状態や行動の観察のみに基づいて,エージェントの行動に関する自然言語説明を生成する手法を提案する。
エージェントの振る舞いのコンパクトな表現がいかに学習され、妥当な説明を生み出すかを示す。
論文 参考訳(メタデータ) (2023-09-19T06:13:24Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
LLMベースのエージェントフレームワークを提案し,実際のユーザ動作をシミュレートするサンドボックス環境を設計する。
実験結果から,本手法のシミュレーション行動は実人の行動に非常に近いことが判明した。
論文 参考訳(メタデータ) (2023-06-05T02:58:35Z) - Generative Agents: Interactive Simulacra of Human Behavior [86.1026716646289]
生成エージェントを導入し,人間の振る舞いをシミュレートする計算ソフトウェアエージェントについて紹介する。
エージェントの経験の完全な記録を格納するために,大規模言語モデルを拡張するアーキテクチャについて述べる。
The Simsにインスパイアされた対話型サンドボックス環境に生成エージェントを投入する。
論文 参考訳(メタデータ) (2023-04-07T01:55:19Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。