論文の概要: Do We Truly Need So Many Samples? Multi-LLM Repeated Sampling Efficiently Scales Test-Time Compute
- arxiv url: http://arxiv.org/abs/2504.00762v2
- Date: Wed, 02 Apr 2025 08:55:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:22:26.822524
- Title: Do We Truly Need So Many Samples? Multi-LLM Repeated Sampling Efficiently Scales Test-Time Compute
- Title(参考訳): 非常に多くのサンプルが必要か? マルチLLM繰り返しサンプリングはテスト時間計算を効果的にスケールする
- Authors: Jianhao Chen, Zishuo Xun, Bocheng Zhou, Han Qi, Qiaosheng Zhang, Yang Chen, Wei Hu, Yuzhong Qu, Wanli Ouyang, Shuyue Hu,
- Abstract要約: 本稿では,テスト時間計算のスケールアップによるLCM性能向上のための,シンプルで効果的で費用効率のよい手法を提案する。
当社の戦略は,複数のモデルを組み込んで,補完的な強みを活用するという,新たなツイストによって,繰り返しサンプリングされる投票フレームワークを基盤としています。
- 参考スコア(独自算出の注目度): 55.330813919992465
- License:
- Abstract: This paper presents a simple, effective, and cost-efficient strategy to improve LLM performance by scaling test-time compute. Our strategy builds upon the repeated-sampling-then-voting framework, with a novel twist: incorporating multiple models, even weaker ones, to leverage their complementary strengths that potentially arise from diverse training data and paradigms. By using consistency as a signal, our strategy dynamically switches between models. Theoretical analysis highlights the efficiency and performance advantages of our strategy. Extensive experiments on six datasets demonstrate that our strategy not only outperforms self-consistency and state-of-the-art multi-agent debate approaches, but also significantly reduces inference costs. Additionally, ModelSwitch requires only a few comparable LLMs to achieve optimal performance and can be extended with verification methods, demonstrating the potential of leveraging multiple LLMs in the generation-verification paradigm.
- Abstract(参考訳): 本稿では,テスト時間計算のスケールアップによるLCM性能向上のための,シンプルで効果的で費用効率のよい手法を提案する。
さまざまなトレーニングデータやパラダイムから生じる可能性のある補完的な強みを活用するために、複数のモデルを組み込むこと。
一貫性を信号として使用することで、我々の戦略はモデル間で動的に切り替わる。
理論的分析は、我々の戦略の効率性と性能上の利点を強調している。
6つのデータセットに対する大規模な実験は、我々の戦略が自己整合性と最先端のマルチエージェントの議論アプローチを上回るだけでなく、推論コストを大幅に削減することを示した。
さらに、ModelSwitchは最適な性能を達成するために数個のLLMしか必要とせず、検証手法で拡張することができ、ジェネレーション検証パラダイムで複数のLLMを活用する可能性を示している。
関連論文リスト
- FastMCTS: A Simple Sampling Strategy for Data Synthesis [67.60823802317141]
我々はモンテカルロ木探索にインスパイアされた革新的なデータ合成戦略であるFastMCTSを紹介する。
FastMCTSは、ステップレベルの評価信号を提供するマルチステップ推論データに対して、より効率的なサンプリング方法を提供する。
英語と中国語の両方の推論データセットの実験では、FastMCTSが30%以上の正しい推論パスを生成することが示されている。
論文 参考訳(メタデータ) (2025-02-17T06:27:57Z) - Revisiting Robust RAG: Do We Still Need Complex Robust Training in the Era of Powerful LLMs? [69.38149239733994]
モデル容量が増大するにつれて、複雑な堅牢なトレーニング戦略が必要かどうかを検討する。
モデルがより強力になるにつれて、複雑な堅牢なトレーニングメソッドによってもたらされるパフォーマンス向上が劇的に減少することがわかった。
この結果から,RAGシステムはモデルがより強力になるにつれて,よりシンプルなアーキテクチャやトレーニング戦略の恩恵を受けることが示唆された。
論文 参考訳(メタデータ) (2025-02-17T03:34:31Z) - Words Matter: Leveraging Individual Text Embeddings for Code Generation in CLIP Test-Time Adaptation [21.20806568508201]
テスト時推論において視覚言語モデル(VLM)が遭遇する分布ドリフトを軽減するために,クラステキスト情報を活用する方法を示す。
本稿では,ラベル割り当て問題の固定セントロイドとしてジェネリッククラステキスト埋め込みを利用して,テスト時間サンプルの擬似ラベルを生成することを提案する。
多様な複雑性を示す複数の人気のあるテスト時間適応ベンチマークの実験は、CLIP-OTの優位性を実証的に示している。
論文 参考訳(メタデータ) (2024-11-26T00:15:37Z) - RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning [33.754240030720425]
エージェントとしてデプロイされる大規模言語モデル(LLM)は、必要な手動のエンゲージメントを最小限に抑えながら、複数のステップでユーザ指定タスクを解決する。
コード合成の領域における実行フィードバックを活用するためのモデル学習のためのエンドツーエンド強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T23:25:17Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - Multimodal Classification via Modal-Aware Interactive Enhancement [6.621745547882088]
モーダル・アウェア・インタラクティブ・エンハンスメント(MIE)と呼ばれる新しいマルチモーダル学習手法を提案する。
具体的には、まず、シャープネス認識最小化(SAM)に基づく最適化戦略を用いて、前フェーズにおける学習目標の円滑化を図る。
そこで, SAMの幾何学的性質の助けを借りて, 逆相における異なるモード間の影響を加味するための勾配修正戦略を提案する。
論文 参考訳(メタデータ) (2024-07-05T15:32:07Z) - Efficient Multi-agent Reinforcement Learning by Planning [33.51282615335009]
マルチエージェント強化学習(MARL)アルゴリズムは、大規模意思決定タスクの解決において、目覚ましいブレークスルーを達成している。
既存のMARLアルゴリズムの多くはモデルフリーであり、サンプル効率を制限し、より困難なシナリオでの適用を妨げている。
政策探索のための集中型モデルとモンテカルロ木探索(MCTS)を組み合わせたMAZeroアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-20T04:36:02Z) - Retrieval-augmented Multi-modal Chain-of-Thoughts Reasoning for Large
Language Models [56.256069117502385]
Chain of Thought (CoT)アプローチは、複雑な推論タスクにおいて、LLM(Large Language Models)の能力を高めるために使用できる。
しかし、マルチモーダル推論における最適なCoT実例の選択は、まだ検討されていない。
本稿では,この課題に対処する新しい手法として,検索機構を用いて実演例を自動的に選択する手法を提案する。
論文 参考訳(メタデータ) (2023-12-04T08:07:21Z) - Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise
Rollouts [52.844741540236285]
マルチエージェント強化学習(MARL)におけるモデルベース手法について検討する。
AORPO(Adaptive Opponent-wise Rollout Policy)と呼ばれる新しい分散型モデルベースのMARL法を提案する。
論文 参考訳(メタデータ) (2021-05-07T16:20:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。