論文の概要: Graph Classification and Radiomics Signature for Identification of Tuberculous Meningitis
- arxiv url: http://arxiv.org/abs/2504.00943v1
- Date: Tue, 01 Apr 2025 16:28:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:24:34.490447
- Title: Graph Classification and Radiomics Signature for Identification of Tuberculous Meningitis
- Title(参考訳): 結核性髄膜炎の診断のためのグラフ分類と放射線信号
- Authors: Snigdha Agarwal, Ganaraja V H, Neelam Sinha, Abhilasha Indoria, Netravathi M, Jitender Saini,
- Abstract要約: 結核性髄膜炎 (TBM) は結核菌による重症脳感染症である。
本研究の目的は,T1-weighted (T1w) non-contrast Magnetic Resonance Imaging (MRI) を用いたTBM患者の分類である。
- 参考スコア(独自算出の注目度): 2.2301876577897968
- License:
- Abstract: Introduction: Tuberculous meningitis (TBM) is a serious brain infection caused by Mycobacterium tuberculosis, characterized by inflammation of the meninges covering the brain and spinal cord. Diagnosis often requires invasive lumbar puncture (LP) and cerebrospinal fluid (CSF) analysis. Objectives: This study aims to classify TBM patients using T1-weighted (T1w) non-contrast Magnetic Resonance Imaging (MRI) scans. We hypothesize that specific brain regions, such as the interpeduncular cisterns, bone, and corpus callosum, contain visual markers that can non-invasively distinguish TBM patients from healthy controls. We propose a novel Pixel-array Graphs Classifier (PAG-Classifier) that leverages spatial relationships between neighbouring 3D pixels in a graph-based framework to extract significant features through eigen decomposition. These features are then used to train machine learning classifiers for effective patient classification. We validate our approach using a radiomics-based methodology, classifying TBM patients based on relevant radiomics features. Results: We utilized an internal dataset consisting of 52 scans, 32 from confirmed TBM patients based on mycobacteria detection in CSF, and 20 from healthy individuals. We achieved a 5-fold cross-validated average F1 score of 85.71% for cistern regions with our PAG-Classifier and 92.85% with the radiomics features classifier, surpassing current state-of-the-art benchmarks by 15% and 22%, respectively. However, bone and corpus callosum regions showed poor classification effectiveness, with average F1 scores below 50%. Conclusion: Our study suggests that algorithms like the PAG-Classifier serve as effective tools for non-invasive TBM analysis, particularly by targeting the interpeduncular cistern. Findings indicate that the bone and corpus callosum regions lack distinctive patterns for differentiation.
- Abstract(参考訳): 導入:結核性髄膜炎(TBM)は、結核菌による重度の脳感染症であり、脳と脊髄を覆う髄膜炎を特徴とする。
診断には、侵入性腰椎穿刺(LP)と脳脊髄液(CSF)分析が必要であることが多い。
目的:T1-weighted (T1w) non-contrast Magnetic Resonance Imaging (MRI) を用いてTBM患者を分類することを目的とした。
我々は,TBM患者と健常者とを非侵襲的に区別できる視覚マーカーを,椎間膜,骨,角膜などの特定の脳領域に含んでいると仮定した。
本稿では, 隣接する3次元画素間の空間的関係を利用して, 固有分解による重要な特徴を抽出する新しい画素アレイグラフ分類器(PAG-Classifier)を提案する。
これらの特徴は、効果的な患者分類のための機械学習分類器の訓練に使用される。
我々は,TBM患者を放射線学的特徴に基づいて分類し,放射線学的手法を用いてアプローチを検証する。
結果: CSFにおけるマイコバクテリウム検出に基づく52検体, TBM患者32検体, 健常者20検体を用いた。
PAG分類器で5倍平均F1スコアを85.71%, 放射能特徴分類器で92.85%, 最先端ベンチマークで15%, 22%を上回った。
しかし, 骨とコーパスのカロサム領域では, F1スコアが50%未満であった。
結論:本研究はPAG分類器などのアルゴリズムが非侵襲的TBM解析の有効なツールであることを示す。
骨とコーパスのカロサム領域には分化のパターンが欠如していることが判明した。
関連論文リスト
- Automatic Classification of Symmetry of Hemithoraces in Canine and
Feline Radiographs [0.0]
畳み込みニューラルネットワーク(CNN)とアクティブな輪郭に基づくヘミトトラス分割法を提案する。
提案手法のロバスト性を検証するため, 被曝・露出過多に対するソラックスセグメンテーション法を用いて, 適切に露光したラジオグラフィーを合成的に劣化させた。
論文 参考訳(メタデータ) (2023-02-24T22:46:16Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - White Matter Tracts are Point Clouds: Neuropsychological Score
Prediction and Critical Region Localization via Geometric Deep Learning [68.5548609642999]
ホワイトマタートラクトデータを用いた神経心理学的スコア予測のためのディープラーニングに基づくフレームワークを提案する。
各点の微細構造測定を行う点雲として, arcuate fasciculus (AF) を表現した。
Paired-Siamese Lossでは,連続した神経心理学的スコアの違いに関する情報を利用した予測性能を改善した。
論文 参考訳(メタデータ) (2022-07-06T02:03:28Z) - Deep radiomic signature with immune cell markers predicts the survival
of glioma patients [8.386631203775533]
畳み込みニューラルネットワーク(CNN)から計算した新しい種類の深部放射線特徴量(DRF)を提案する。
提案手法は,MRIスキャンのラベル付き腫瘍領域内で,事前訓練した3D-CNNの活性化マップを集約することにより,合計180個のRFを抽出する。
その結果, DRFと各種マーカーとの間には高い相関がみられ, これらのマーカーに基づいて分類した患者間で有意差が認められた。
論文 参考訳(メタデータ) (2022-06-09T08:52:15Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++は、CTAスキャンで脳血管ツリーをセグメンテーションし、ラベル付けするために設計されたアルゴリズムである。
閉塞血管を同定するために,脳動脈のラベル付け機構を拡張した。
本稿では,そのモデルの全ノードにおける経路の反復的体系探索という一般的な概念を紹介し,新たな対話的特徴を実現する。
論文 参考訳(メタデータ) (2022-04-26T14:20:26Z) - A New Deep Hybrid Boosted and Ensemble Learning-based Brain Tumor
Analysis using MRI [0.28675177318965034]
磁気共鳴画像(MRI)における脳腫瘍の検出・分類のための2段階深層学習フレームワークの提案
第1フェーズでは、健康な人から腫瘍MRI画像を検出するために、新しい深層化特徴とアンサンブル分類器(DBF-EC)方式が提案されている。
第2段階では, 異なる腫瘍タイプを分類するために, 動的静的特徴とML分類器からなる融合型脳腫瘍分類法が提案されている。
論文 参考訳(メタデータ) (2022-01-14T10:24:47Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - A Deep Learning-Based Approach to Extracting Periosteal and Endosteal
Contours of Proximal Femur in Quantitative CT Images [25.76523855274612]
セグメンテーションタスクのために,3次元の終端(3D)完全畳み込みニューラルネットワークを開発した。
同一のネットワーク構造を持つ2つのモデルが訓練され、それぞれ腹腔内輪郭と内皮輪郭に対して97.87%と96.49%のサイコロ類似係数(DSC)を達成した。
大腿骨頚部骨折のリスク予測や有限要素解析などの臨床応用の可能性を示した。
論文 参考訳(メタデータ) (2021-02-03T10:23:41Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
ダイナミックコントラストCT(Dynamic contrast Computed Tomography)のための完全自動多段階肝腫瘍評価フレームワークを提案する。
本システムでは, 腫瘍提案検出, 腫瘍採取, 原発部位の選択, 深部テクスチャに基づく腫瘍評価の4段階からなる。
論文 参考訳(メタデータ) (2020-06-28T19:55:34Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。