論文の概要: Enabling Efficient Processing of Spiking Neural Networks with On-Chip Learning on Commodity Neuromorphic Processors for Edge AI Systems
- arxiv url: http://arxiv.org/abs/2504.00957v1
- Date: Tue, 01 Apr 2025 16:52:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:26:03.779682
- Title: Enabling Efficient Processing of Spiking Neural Networks with On-Chip Learning on Commodity Neuromorphic Processors for Edge AI Systems
- Title(参考訳): エッジAIシステムのためのコモディティニューロモーフィックプロセッサのオンチップ学習によるスパイキングニューラルネットワークの効率的な処理
- Authors: Rachmad Vidya Wicaksana Putra, Pasindu Wickramasinghe, Muhammad Shafique,
- Abstract要約: ニューロモルフィックプロセッサ上のスパイキングニューラルネットワーク(SNN)アルゴリズムは、超低消費電力/エネルギーAI計算を提供する。
本稿では,コモディティニューロモルフィックプロセッサ上での効率的なSNN処理を実現するための設計手法を提案する。
- 参考スコア(独自算出の注目度): 5.343921650701002
- License:
- Abstract: The rising demand for energy-efficient edge AI systems (e.g., mobile agents/robots) has increased the interest in neuromorphic computing, since it offers ultra-low power/energy AI computation through spiking neural network (SNN) algorithms on neuromorphic processors. However, their efficient implementation strategy has not been comprehensively studied, hence limiting SNN deployments for edge AI systems. Toward this, we propose a design methodology to enable efficient SNN processing on commodity neuromorphic processors. To do this, we first study the key characteristics of targeted neuromorphic hardware (e.g., memory and compute budgets), and leverage this information to perform compatibility analysis for network selection. Afterward, we employ a mapping strategy for efficient SNN implementation on the targeted processor. Furthermore, we incorporate an efficient on-chip learning mechanism to update the systems' knowledge for adapting to new input classes and dynamic environments. The experimental results show that the proposed methodology leads the system to achieve low latency of inference (i.e., less than 50ms for image classification, less than 200ms for real-time object detection in video streaming, and less than 1ms in keyword recognition) and low latency of on-chip learning (i.e., less than 2ms for keyword recognition), while incurring less than 250mW of processing power and less than 15mJ of energy consumption across the respective different applications and scenarios. These results show the potential of the proposed methodology in enabling efficient edge AI systems for diverse application use-cases.
- Abstract(参考訳): エネルギー効率の高いエッジAIシステム(例えば、移動エージェント/ロボット)の需要の高まりは、ニューロモルフィックプロセッサ上のスパイクニューラルネットワーク(SNN)アルゴリズムを通じて超低消費電力/エネルギーAI計算を提供するため、ニューロモルフィックコンピューティングへの関心を高めている。
しかしながら、彼らの効率的な実装戦略は包括的に研究されていないため、エッジAIシステムへのSNNデプロイメントが制限されている。
そこで本研究では,コモディティニューロモルフィックプロセッサ上での効率的なSNN処理を実現するための設計手法を提案する。
そこで我々はまず,対象とするニューロモルフィックハードウェア(メモリや計算予算など)の鍵となる特性について検討し,その情報を利用してネットワーク選択のための互換性解析を行う。
その後、ターゲットプロセッサ上での効率的なSNN実装のためのマッピング戦略を採用する。
さらに,新しい入力クラスや動的環境に適応するためのシステム知識を更新するための,効率的なオンチップ学習機構を組み込んだ。
実験の結果,提案手法は推論の低レイテンシ(画像分類では50ms未満,ビデオストリーミングでは200ms未満,キーワード認識では1ms未満)とオンチップ学習の低レイテンシ(キーワード認識では2ms未満)を実現するとともに,異なるアプリケーションやシナリオに対して250mW未満の処理能力と15mJ未満のエネルギー消費を実現する。
これらの結果は、多様なアプリケーションユースケースに対して効率的なエッジAIシステムを実現するための提案手法の可能性を示している。
関連論文リスト
- Sparsity-Aware Hardware-Software Co-Design of Spiking Neural Networks: An Overview [1.0499611180329804]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューラルネットワークのスパースでイベント駆動的な性質にインスパイアされ、超低消費電力人工知能の可能性を秘めている。
スパースSNNのハードウェア・ソフトウェア共同設計について検討し,スパース表現,ハードウェアアーキテクチャ,トレーニング技術がハードウェア効率に与える影響について検討する。
本研究の目的は,スパースSNNの計算的優位性をフル活用した,組込みニューロモルフィックシステムへの道筋を解明することである。
論文 参考訳(メタデータ) (2024-08-26T17:22:11Z) - Analog Spiking Neuron in CMOS 28 nm Towards Large-Scale Neuromorphic Processors [0.8426358786287627]
本研究では,TSMCの28nmCMOS技術を用いた低消費電力Leaky Integrate- and-Fireニューロンの設計を提案する。
製造されたニューロンは1.61 fJ/スパイクを消費し、34$mu m2$の活性領域を占有し、最大スパイク周波数は250mVで300kHzである。
論文 参考訳(メタデータ) (2024-08-14T17:51:20Z) - Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking
Neural networks: from Algorithms to Technology [11.479629320025673]
スパイキングニューラルネットワーク(SNN)は、幅広い信号処理アプリケーションのために、ディープニューラルネットワークの魅力的な代替品となっている。
我々は、低レイテンシとエネルギー効率のSNNを効率的に訓練し、拡張するためのアルゴリズムと最適化の進歩について述べる。
デプロイ可能なSNNシステム構築における研究の今後の可能性について論じる。
論文 参考訳(メタデータ) (2023-12-02T19:47:00Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
スマートエコシステム(smart ecosystems)"は、スタンドアロンではなく、センセーションが同時に行われるように形成されています。
これはデバイス上の推論パラダイムを、エッジにニューラル処理ユニット(NPU)をデプロイする方向にシフトしている。
そこで本研究では,実行時のプリエンプションが到着・終了プロセスによってもたらされる動的性を考慮に入れた,新しい早期終了スケジューリングを提案する。
論文 参考訳(メタデータ) (2022-09-27T15:04:01Z) - FPGA-based AI Smart NICs for Scalable Distributed AI Training Systems [62.20308752994373]
我々は、フィールドプログラマブルゲートアレイ(FPGA)を用いた分散AI訓練システムのための新しいスマートネットワークインタフェースカード(NIC)を提案する。
提案するFPGAベースのAIスマートNICは,従来のNICを用いたベースラインシステムと比較して,6ノードで1.6倍,32ノードで2.5倍の性能向上が期待できる。
論文 参考訳(メタデータ) (2022-04-22T21:57:00Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
我々は,MS-RANAS(Multi-Scale Resource-Aware Neural Architecture Search)を提案する。
我々は,検索コストの削減を図るために,ワンショットのアーキテクチャ探索手法を採用した。
我々は精度-速度トレードオフの観点から最先端の結果を得る。
論文 参考訳(メタデータ) (2020-09-29T11:56:01Z) - Fully-parallel Convolutional Neural Network Hardware [0.7829352305480285]
本稿では,ハードウェアにArticial Neural Networks(ANN)を実装するための,新しい電力・面積効率アーキテクチャを提案する。
LENET-5として完全に並列なCNNを1つのFPGAに埋め込んでテストするのが初めてである。
論文 参考訳(メタデータ) (2020-06-22T17:19:09Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - A Supervised Learning Algorithm for Multilayer Spiking Neural Networks
Based on Temporal Coding Toward Energy-Efficient VLSI Processor Design [2.6872737601772956]
スパイキングニューラルネットワーク(スパイキングニューラルネット、英: Spiking Neural Network、SNN)は、スパイクの形で情報を処理できる脳にインスパイアされた数学的モデルである。
時間符号化に基づくSNNのための新しい教師付き学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-08T03:37:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。