論文の概要: Initial Conditions from Galaxies: Machine-Learning Subgrid Correction to Standard Reconstruction
- arxiv url: http://arxiv.org/abs/2504.01092v1
- Date: Tue, 01 Apr 2025 18:09:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:17:58.387129
- Title: Initial Conditions from Galaxies: Machine-Learning Subgrid Correction to Standard Reconstruction
- Title(参考訳): 銀河からの最初の条件:機械学習サブグリッド補正と標準再構成
- Authors: Liam Parker, Adrian E. Bayer, Uros Seljak,
- Abstract要約: 本研究では,近年のハロや銀河から原始密度を復元するハイブリッド手法を提案する。
フルボリュームの分割されたサブグリッドの小さな補正を学習するために、ディープラーニングモデルを訓練する。
提案手法は,大規模精度を犠牲にすることなく,非線形性とバイアスを頑健に捕捉する。
- 参考スコア(独自算出の注目度): 3.0040661953201475
- License:
- Abstract: We present a hybrid method for reconstructing the primordial density from late-time halos and galaxies. Our approach involves two steps: (1) apply standard Baryon Acoustic Oscillation (BAO) reconstruction to recover the large-scale features in the primordial density field and (2) train a deep learning model to learn small-scale corrections on partitioned subgrids of the full volume. At inference, this correction is then convolved across the full survey volume, enabling scaling to large survey volumes. We train our method on both mock halo catalogs and mock galaxy catalogs in both configuration and redshift space from the Quijote $1(h^{-1}\,\mathrm{Gpc})^3$ simulation suite. When evaluated on held-out simulations, our combined approach significantly improves the reconstruction cross-correlation coefficient with the true initial density field and remains robust to moderate model misspecification. Additionally, we show that models trained on $1(h^{-1}\,\mathrm{Gpc})^3$ can be applied to larger boxes--e.g., $(3h^{-1}\,\mathrm{Gpc})^3$--without retraining. Finally, we perform a Fisher analysis on our method's recovery of the BAO peak, and find that it significantly improves the error on the acoustic scale relative to standard BAO reconstruction. Ultimately, this method robustly captures nonlinearities and bias without sacrificing large-scale accuracy, and its flexibility to handle arbitrarily large volumes without escalating computational requirements makes it especially promising for large-volume surveys like DESI.
- Abstract(参考訳): 本研究では,近年のハロや銀河から原始密度を復元するハイブリッド手法を提案する。
提案手法は,(1)標準バリオン音響振動法(BAO)を応用して原位置密度場における大規模特徴を復元し,(2)深層学習モデルを用いて,全体積の分割部分の小さな補正を学習する。
推測すると、この補正は全調査ボリュームに展開され、大規模な調査ボリュームへのスケーリングを可能にします。
我々はQuijote $1(h^{-1}\,\mathrm{Gpc})^3$ Simulation Suiteから、この手法をモックハローカタログとモック銀河カタログの両方でトレーニングする。
ホールドアウトシミュレーションで評価すると,本手法は真の初期密度場との相互相関係数を大幅に改善し,中等度モデルの誤特定に対して頑健である。
さらに,1(h^{-1}\,\mathrm{Gpc})^3$でトレーニングされたモデルは,再トレーニングなしで,より大きなボックス-e g , $(3h^{-1}\,\mathrm{Gpc})^3$に適用可能であることを示す。
最後に,本手法のBAOピーク回復に関するFisher解析を行い,標準的なBAO復元に対する音響スケールの誤差を大幅に改善することを確認した。
最終的に、この手法は大規模精度を犠牲にすることなく、非線形性とバイアスを頑健に捕捉し、計算要求をエスカレートすることなく、任意に大容量を扱える柔軟性により、特にDESIのような大規模サーベイでは有望である。
関連論文リスト
- CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2は大規模なシーン再構築のための新しいアプローチである。
分解段階の密度化・深さ回帰手法を実装し, ぼやけたアーチファクトを除去し, 収束を加速する。
本手法は, 視覚的品質, 幾何学的精度, ストレージ, トレーニングコストの両立を図っている。
論文 参考訳(メタデータ) (2024-11-01T17:59:31Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo [104.9535542833054]
我々は、強化学習のためのトンプソンサンプリングに基づくスケーラブルで効果的な探索戦略を提案する。
代わりに、Langevin Monte Carlo を用いて、Q 関数をその後部分布から直接サンプリングする。
提案手法は,Atari57スイートからのいくつかの挑戦的な探索課題において,最先端の深部RLアルゴリズムと比較して,より優れた,あるいは類似した結果が得られる。
論文 参考訳(メタデータ) (2023-05-29T17:11:28Z) - Restricted Strong Convexity of Deep Learning Models with Smooth
Activations [31.003601717265006]
本研究では,スムーズなアクティベーション機能を持つディープラーニングモデルの最適化問題について検討する。
Restricted Strong Convexity (RSC) に基づく最適化の新しい解析手法を提案する。
深層学習モデルのためのRCCに基づくGDの幾何収束性を確立するための最初の結果である。
論文 参考訳(メタデータ) (2022-09-29T21:24:26Z) - Training \beta-VAE by Aggregating a Learned Gaussian Posterior with a
Decoupled Decoder [0.553073476964056]
VAEトレーニングの現在の実践は、しばしば、再構成の忠実さと、潜伏空間の連続性$/$$分散の間のトレードオフをもたらす。
本稿では,2つの損失の対角的機構の直観と注意深い解析を行い,VAEを訓練するための簡易で効果的な2段階法を提案する。
本手法は, 3次元頭蓋骨再建と形状完成を目的とした医療データセットを用いて評価し, 提案手法を用いてトレーニングしたVAEの有望な生成能力を示す。
論文 参考訳(メタデータ) (2022-09-29T13:49:57Z) - Machine learning algorithms for three-dimensional mean-curvature
computation in the level-set method [0.0]
レベルセット法のためのデータ駆動平均曲率解法を提案する。
提案方式は, 現在の粒子界面再構成よりも高精度な平均曲率推定を行うことができる。
論文 参考訳(メタデータ) (2022-08-18T20:19:22Z) - Posterior Coreset Construction with Kernelized Stein Discrepancy for
Model-Based Reinforcement Learning [78.30395044401321]
我々は、強化学習(MBRL)のための新しいモデルベースアプローチを開発する。
ターゲット遷移モデルの仮定を緩和し、混合モデルの一般的な族に属する。
連続的な制御環境では、壁時計の時間を最大50%削減することができる。
論文 参考訳(メタデータ) (2022-06-02T17:27:49Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
漸進的強化学習における後悔を最小限に抑えるために,新しいモデルフリーアルゴリズムを提案する。
提案アルゴリズムは、2つのQ-ラーニングシーケンスの助けを借りて、初期設定された参照更新ルールを用いる。
初期の分散還元法の設計原理は、他のRL設定とは独立した関心を持つかもしれない。
論文 参考訳(メタデータ) (2021-10-09T21:13:48Z) - Model-based Reinforcement Learning for Continuous Control with Posterior
Sampling [10.91557009257615]
連続状態空間における強化学習(PSRL)のためのモデルベース後方サンプリングについて検討した。
MPC-PSRLはモデルに基づく後部サンプリングアルゴリズムであり,行動選択のためのモデル予測制御を行う。
論文 参考訳(メタデータ) (2020-11-20T21:00:31Z) - The Generalized Lasso with Nonlinear Observations and Generative Priors [63.541900026673055]
我々は、幅広い測定モデルで満たされるガウス下測度を仮定する。
この結果から, 局所埋込特性を仮定して, 均一回復保証まで拡張できることが示唆された。
論文 参考訳(メタデータ) (2020-06-22T16:43:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。