Global explainability of a deep abstaining classifier
- URL: http://arxiv.org/abs/2504.01202v1
- Date: Tue, 01 Apr 2025 21:34:10 GMT
- Title: Global explainability of a deep abstaining classifier
- Authors: Sayera Dhaubhadel, Jamaludin Mohd-Yusof, Benjamin H. McMahon, Trilce Estrada, Kumkum Ganguly, Adam Spannaus, John P. Gounley, Xiao-Cheng Wu, Eric B. Durbin, Heidi A. Hanson, Tanmoy Bhattacharya,
- Abstract summary: We present a global explainability method to characterize sources of errors in the histology prediction task of our real-world multitask convolutional neural network (MTCNN)-based deep abstaining classifier (DAC)<n>Our classifier was trained and evaluated on 1.04 million hand-annotated samples and makes simultaneous predictions of cancer site, subsite, histology, laterality, and behavior for each report.
- Score: 1.6592225881659535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a global explainability method to characterize sources of errors in the histology prediction task of our real-world multitask convolutional neural network (MTCNN)-based deep abstaining classifier (DAC), for automated annotation of cancer pathology reports from NCI-SEER registries. Our classifier was trained and evaluated on 1.04 million hand-annotated samples and makes simultaneous predictions of cancer site, subsite, histology, laterality, and behavior for each report. The DAC framework enables the model to abstain on ambiguous reports and/or confusing classes to achieve a target accuracy on the retained (non-abstained) samples, but at the cost of decreased coverage. Requiring 97% accuracy on the histology task caused our model to retain only 22% of all samples, mostly the less ambiguous and common classes. Local explainability with the GradInp technique provided a computationally efficient way of obtaining contextual reasoning for thousands of individual predictions. Our method, involving dimensionality reduction of approximately 13000 aggregated local explanations, enabled global identification of sources of errors as hierarchical complexity among classes, label noise, insufficient information, and conflicting evidence. This suggests several strategies such as exclusion criteria, focused annotation, and reduced penalties for errors involving hierarchically related classes to iteratively improve our DAC in this complex real-world implementation.
Related papers
- Rethinking generalization of classifiers in separable classes scenarios and over-parameterized regimes [0.0]
We show that in separable classes scenarios the proportion of "bad" global minima diminishes exponentially with the number of training data n.
We propose a model for the density distribution of the true error, yielding learning curves that align with experiments on MNIST and CIFAR-10.
arXiv Detail & Related papers (2024-10-22T10:12:57Z) - Meta-GCN: A Dynamically Weighted Loss Minimization Method for Dealing with the Data Imbalance in Graph Neural Networks [5.285761906707429]
We propose a meta-learning algorithm, named Meta-GCN, for adaptively learning the example weights.
We have shown that Meta-GCN outperforms state-of-the-art frameworks and other baselines in terms of accuracy.
arXiv Detail & Related papers (2024-06-24T18:59:24Z) - Quality assurance of organs-at-risk delineation in radiotherapy [7.698565355235687]
The delineation of tumor target and organs-at-risk is critical in the radiotherapy treatment planning.
The quality assurance of the automatic segmentation is still an unmet need in clinical practice.
Our proposed model, which introduces residual network and attention mechanism in the one-class classification framework, was able to detect the various types of OAR contour errors with high accuracy.
arXiv Detail & Related papers (2024-05-20T02:32:46Z) - DALSA: Domain Adaptation for Supervised Learning From Sparsely Annotated
MR Images [2.352695945685781]
We propose a new method that employs transfer learning techniques to correct sampling selection errors introduced by sparse annotations during supervised learning for automated tumor segmentation.
The proposed method derives high-quality classifiers for the different tissue classes from sparse and unambiguous annotations.
Compared to training on fully labeled data, we reduced the time for labeling and training by a factor greater than 70 and 180 respectively without sacrificing accuracy.
arXiv Detail & Related papers (2024-03-12T09:17:21Z) - Understanding and Mitigating Classification Errors Through Interpretable
Token Patterns [58.91023283103762]
Characterizing errors in easily interpretable terms gives insight into whether a classifier is prone to making systematic errors.
We propose to discover those patterns of tokens that distinguish correct and erroneous predictions.
We show that our method, Premise, performs well in practice.
arXiv Detail & Related papers (2023-11-18T00:24:26Z) - A Unified Generalization Analysis of Re-Weighting and Logit-Adjustment
for Imbalanced Learning [129.63326990812234]
We propose a technique named data-dependent contraction to capture how modified losses handle different classes.
On top of this technique, a fine-grained generalization bound is established for imbalanced learning, which helps reveal the mystery of re-weighting and logit-adjustment.
arXiv Detail & Related papers (2023-10-07T09:15:08Z) - Non-Asymptotic Performance of Social Machine Learning Under Limited Data [45.48644055449902]
This paper studies the probability of error associated with the social machine learning framework.
It addresses the problem of classifying a stream of unlabeled data in a distributed manner.
arXiv Detail & Related papers (2023-06-15T17:42:14Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
We study sample efficient reinforcement learning (RL) under the general framework of interactive decision making.
We propose a novel complexity measure, generalized eluder coefficient (GEC), which characterizes the fundamental tradeoff between exploration and exploitation.
We show that RL problems with low GEC form a remarkably rich class, which subsumes low Bellman eluder dimension problems, bilinear class, low witness rank problems, PO-bilinear class, and generalized regular PSR.
arXiv Detail & Related papers (2022-11-03T16:42:40Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
Anomaly detection aims at identifying deviant samples from the normal data distribution.
Contrastive learning has provided a successful way to sample representation that enables effective discrimination on anomalies.
We propose a novel hierarchical semi-supervised contrastive learning framework, for contamination-resistant anomaly detection.
arXiv Detail & Related papers (2022-07-24T18:49:26Z) - Prototype-Anchored Learning for Learning with Imperfect Annotations [83.7763875464011]
It is challenging to learn unbiased classification models from imperfectly annotated datasets.
We propose a prototype-anchored learning (PAL) method, which can be easily incorporated into various learning-based classification schemes.
We verify the effectiveness of PAL on class-imbalanced learning and noise-tolerant learning by extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2022-06-23T10:25:37Z) - Latent-Insensitive Autoencoders for Anomaly Detection and
Class-Incremental Learning [0.0]
We introduce Latent-Insensitive Autoencoder (LIS-AE) where unlabeled data from a similar domain is utilized as negative examples to shape the latent layer (bottleneck) of a regular autoencoder.
We treat class-incremental learning as multiple anomaly detection tasks by adding a different latent layer for each class and use other available classes in task as negative examples to shape each latent layer.
arXiv Detail & Related papers (2021-10-25T16:53:49Z) - Stratified Learning: A General-Purpose Statistical Method for Improved
Learning under Covariate Shift [1.1470070927586016]
We propose a simple, statistically principled, and theoretically justified method to improve supervised learning when the training set is not representative.
We build upon a well-established methodology in causal inference, and show that the effects of covariate shift can be reduced or eliminated by conditioning on propensity scores.
We demonstrate the effectiveness of our general-purpose method on two contemporary research questions in cosmology, outperforming state-of-the-art importance weighting methods.
arXiv Detail & Related papers (2021-06-21T15:53:20Z) - Self-Trained One-class Classification for Unsupervised Anomaly Detection [56.35424872736276]
Anomaly detection (AD) has various applications across domains, from manufacturing to healthcare.
In this work, we focus on unsupervised AD problems whose entire training data are unlabeled and may contain both normal and anomalous samples.
To tackle this problem, we build a robust one-class classification framework via data refinement.
We show that our method outperforms state-of-the-art one-class classification method by 6.3 AUC and 12.5 average precision.
arXiv Detail & Related papers (2021-06-11T01:36:08Z) - Attentional-Biased Stochastic Gradient Descent [74.49926199036481]
We present a provable method (named ABSGD) for addressing the data imbalance or label noise problem in deep learning.
Our method is a simple modification to momentum SGD where we assign an individual importance weight to each sample in the mini-batch.
ABSGD is flexible enough to combine with other robust losses without any additional cost.
arXiv Detail & Related papers (2020-12-13T03:41:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.