Enhancing PTSD Outcome Prediction with Ensemble Models in Disaster Contexts
- URL: http://arxiv.org/abs/2411.10661v1
- Date: Sat, 16 Nov 2024 01:44:43 GMT
- Title: Enhancing PTSD Outcome Prediction with Ensemble Models in Disaster Contexts
- Authors: Ayesha Siddiqua, Atib Mohammad Oni, Abu Saleh Musa Miah, Jungpil Shin,
- Abstract summary: Post-traumatic stress disorder (PTSD) is a significant mental health challenge that affects individuals exposed to traumatic events.
Early detection and effective intervention for PTSD are crucial, as it can lead to long-term psychological distress if untreated.
- Score: 0.9249657468385778
- License:
- Abstract: Post-traumatic stress disorder (PTSD) is a significant mental health challenge that affects individuals exposed to traumatic events. Early detection and effective intervention for PTSD are crucial, as it can lead to long-term psychological distress if untreated. Accurate detection of PTSD is essential for timely and targeted mental health interventions, especially in disaster-affected populations. Existing research has explored machine learning approaches for classifying PTSD, but many face limitations in terms of model performance and generalizability. To address these issues, we implemented a comprehensive preprocessing pipeline. This included data cleaning, missing value treatment using the SimpleImputer, label encoding of categorical variables, data augmentation using SMOTE to balance the dataset, and feature scaling with StandardScaler. The dataset was split into 80\% training and 20\% testing. We developed an ensemble model using a majority voting technique among several classifiers, including Logistic Regression, Support Vector Machines (SVM), Random Forest, XGBoost, LightGBM, and a customized Artificial Neural Network (ANN). The ensemble model achieved an accuracy of 96.76\% with a benchmark dataset, significantly outperforming individual models. The proposed method's advantages include improved robustness through the combination of multiple models, enhanced ability to generalize across diverse data points, and increased accuracy in detecting PTSD. Additionally, the use of SMOTE for data augmentation ensured better handling of imbalanced datasets, leading to more reliable predictions. The proposed approach offers valuable insights for policymakers and healthcare providers by leveraging predictive analytics to address mental health issues in vulnerable populations, particularly those affected by disasters.
Related papers
- Federated Anomaly Detection for Early-Stage Diagnosis of Autism Spectrum Disorders using Serious Game Data [0.0]
This study presents a novel semi-supervised approach for ASD detection using AutoEncoder-based Machine Learning (ML) methods.
Our approach utilizes data collected manually through a serious game specifically designed for this purpose.
Since the sensitive data collected by the gamified application are susceptible to privacy leakage, we developed a Federated Learning framework.
arXiv Detail & Related papers (2024-10-25T23:00:12Z) - Semi-Supervised Reward Modeling via Iterative Self-Training [52.48668920483908]
We propose Semi-Supervised Reward Modeling (SSRM), an approach that enhances RM training using unlabeled data.
We demonstrate that SSRM significantly improves reward models without incurring additional labeling costs.
Overall, SSRM substantially reduces the dependency on large volumes of human-annotated data, thereby decreasing the overall cost and time involved in training effective reward models.
arXiv Detail & Related papers (2024-09-10T22:57:58Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Survival Prediction of Children Undergoing Hematopoietic Stem Cell
Transplantation Using Different Machine Learning Classifiers by Performing
Chi-squared Test and Hyper-parameter Optimization: A Retrospective Analysis [4.067706269490143]
An efficient survival classification model is presented in a comprehensive manner.
A synthetic dataset is generated by imputing the missing values, transforming the data using dummy variable encoding, and compressing the dataset from 59 features to the 11 most correlated features using Chi-squared feature selection.
Several supervised ML methods were trained in this regard, like Decision Tree, Random Forest, Logistic Regression, K-Nearest Neighbors, Gradient Boosting, Ada Boost, and XG Boost.
arXiv Detail & Related papers (2022-01-22T08:01:22Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.