Asymptotic Error Bounds and Fractional-Bit Design for Fixed-Point Grover's Quantum Algorithm Emulation
- URL: http://arxiv.org/abs/2504.01430v1
- Date: Wed, 02 Apr 2025 07:33:36 GMT
- Title: Asymptotic Error Bounds and Fractional-Bit Design for Fixed-Point Grover's Quantum Algorithm Emulation
- Authors: Seonghyun Choi, Kyeongwon Lee, Jongin Choi, Woojoo Lee,
- Abstract summary: We analyze truncation error propagation in fixed-point QC emulation, focusing on Grover's quantum search algorithm.<n>We quantify the overall error by scaling as $ell$ distance between ideal and emulated probability distributions.<n>We provide a closed-form formula to determine the minimal fractional-bit precision required to achieve a specified error threshold.
- Score: 2.812395851874055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing (QC) emulators, which simulate quantum algorithms on classical hardware, are indispensable platforms for testing quantum algorithms before scalable quantum computers become widely available. A critical challenge in QC emulation is managing numerical errors from finite arithmetic precision, especially truncation errors in resource-efficient fixed-point arithmetic. Despite its importance, systematic studies quantifying how truncation errors impact quantum algorithm accuracy are limited. In this paper, we propose a rigorous quantitative framework analyzing truncation error propagation in fixed-point QC emulation, focusing on Grover's quantum search algorithm. First, we introduce a simplified two-value amplitude representation of quantum states during Grover's iterations and prove its theoretical validity. Using this representation, we derive explicit mathematical expressions characterizing truncation error accumulation across quantum gate operations. We quantify the overall emulation error by the $\ell_2$ distance between ideal and emulated probability distributions, obtaining asymptotic bounds scaling as $O(2^{n-f})$, where $n$ is the number of qubits and $f$ is fractional-bit precision. Extensive numerical simulations and empirical experiments on a practical fixed-point QC emulator confirm that observed errors precisely match our theoretical predictions. Finally, we provide a closed-form formula to determine the minimal fractional-bit precision required to achieve a specified error threshold, offering clear guidelines for emulator designers balancing accuracy and resource utilization.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Logical Error Rates for a [[4,2,2]]-Encoded Variational Quantum Eigensolver Ansatz [0.0]
We develop a framework to estimate the computational accuracy of near-term noisy, intermediate scale quantum computing devices.<n>Results indicate that current quantum computers can achieve error rates that yield useful outcomes for chemical applications.
arXiv Detail & Related papers (2024-05-05T19:02:58Z) - A two-stage solution to quantum process tomography: error analysis and
optimal design [6.648667887733229]
We propose a two-stage solution for both trace-preserving and non-trace-preserving quantum process tomography.
Our algorithm exhibits a computational complexity of $O(MLd2)$ where $d$ is the dimension of the quantum system.
Numerical examples and testing on IBM quantum devices are presented to demonstrate the performance and efficiency of our algorithm.
arXiv Detail & Related papers (2024-02-14T05:45:11Z) - Quantum Semidefinite Programming with Thermal Pure Quantum States [0.5639904484784125]
We show that a quantization'' of the matrix multiplicative-weight algorithm can provide approximate solutions to SDPs quadratically faster than the best classical algorithms.
We propose a modification of this quantum algorithm and show that a similar speedup can be obtained by replacing the Gibbs-state sampler with the preparation of thermal pure quantum (TPQ) states.
arXiv Detail & Related papers (2023-10-11T18:00:53Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Compilation of a simple chemistry application to quantum error correction primitives [44.99833362998488]
We estimate the resources required to fault-tolerantly perform quantum phase estimation on a minimal chemical example.
We find that implementing even a simple chemistry circuit requires 1,000 qubits and 2,300 quantum error correction rounds.
arXiv Detail & Related papers (2023-07-06T18:00:10Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - On proving the robustness of algorithms for early fault-tolerant quantum computers [0.0]
We introduce a randomized algorithm for the task of phase estimation and give an analysis of its performance under two simple noise models.<n>We calculate that the randomized algorithm can succeed with arbitrarily high probability as long as the required circuit depth is less than 0.916 times the dephasing scale.
arXiv Detail & Related papers (2022-09-22T21:28:12Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Randomized compiling for scalable quantum computing on a noisy
superconducting quantum processor [0.0]
Coherent errors limit the performance of quantum algorithms in an unpredictable manner.
Average error rates measured by randomized benchmarking and related protocols are not sensitive to the full impact of coherent errors.
Our results demonstrate that randomized compiling can be utilized to leverage and predict the capabilities of modern-day noisy quantum processors.
arXiv Detail & Related papers (2020-10-01T06:52:45Z) - The limits of quantum circuit simulation with low precision arithmetic [0.0]
The goal is to estimate how much memory can be saved in simulations that involve random, maximally entangled quantum states.
An arithmetic polar representation of $B$ bits is defined for each quantum amplitude.
A model is developed to quantify the cumulative errors on a circuit of $Q$ qubits and $G$ gates.
arXiv Detail & Related papers (2020-05-27T14:48:31Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.