Logical Error Rates for a [[4,2,2]]-Encoded Variational Quantum Eigensolver Ansatz
- URL: http://arxiv.org/abs/2405.03032v2
- Date: Tue, 14 Jan 2025 05:43:14 GMT
- Title: Logical Error Rates for a [[4,2,2]]-Encoded Variational Quantum Eigensolver Ansatz
- Authors: Meenambika Gowrishankar, Daniel Claudino, Jerimiah Wright, Travis Humble,
- Abstract summary: We develop a framework to estimate the computational accuracy of near-term noisy, intermediate scale quantum computing devices.
Results indicate that current quantum computers can achieve error rates that yield useful outcomes for chemical applications.
- Score: 0.0
- License:
- Abstract: Quantum computing offers a potential for algorithmic speedups for applications, such as large-scale simulations in chemistry and physics. However, these speedups must yield results that are sufficiently accurate to predict realistic outcomes of experiments precisely. Delivering on the promise of high accuracy and precision requires methods to evaluate the computational accuracy of the quantum computing devices. We develop a framework to estimate the computational accuracy of near-term noisy, intermediate scale quantum (NISQ) computing devices using a quantum chemistry application. Application benchmarks that run on NISQ devices require techniques for mitigating errors to improve accuracy and precision. We use device agnostic error-mitigation schemes, quantum error detection and readout error detection, with post-selection to mitigate the dominant sources of noise. We evaluate the framework by simulating the ground state of molecular hydrogen with the variational quantum eigensolver (VQE) algorithm, estimating the energy and calculating the precision of the estimate using numerical simulations with realistic noise models. We first quantify the improvement in the logical error rate and state fidelity of the VQE application when encoded with the [[4,2,2]] quantum error detection code. When additionally encoded with readout error detection, we show that compared to the unencoded simulation, the encoded simulation yields a more accurate estimate by more than 1 mHa (0.027 eV) with comparable precision and higher state fidelity. Additionally, unlike the best estimate from the unencoded simulations, the results from the encoded simulation fall within the chemical accuracy threshold of 1.6 mHa of the exact energy. The estimated accuracy and precision indicate that current quantum computers can achieve error rates that yield useful outcomes for chemical applications.
Related papers
- MITS: A Quantum Sorcerer Stone For Designing Surface Codes [2.348041867134616]
We present MITS, a tool designed to reverse-engineer the well-known simulator STIM for designing QEC codes.
MITS accepts the specific noise model of a quantum computer and a target logical error rate as input and outputs the optimal surface code rounds and code distances.
arXiv Detail & Related papers (2024-02-16T19:17:53Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - Compilation of a simple chemistry application to quantum error correction primitives [44.99833362998488]
We estimate the resources required to fault-tolerantly perform quantum phase estimation on a minimal chemical example.
We find that implementing even a simple chemistry circuit requires 1,000 qubits and 2,300 quantum error correction rounds.
arXiv Detail & Related papers (2023-07-06T18:00:10Z) - Statistical phase estimation and error mitigation on a superconducting
quantum processor [2.624902795082451]
We practically implement statistical phase estimation on Rigetti's superconducting processors.
We incorporate error mitigation strategies including zero-noise extrapolation and readout error mitigation with bit-flip averaging.
Our work demonstrates that statistical phase estimation has a natural resilience to noise, particularly after mitigating coherent errors.
arXiv Detail & Related papers (2023-04-11T10:40:22Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Validation tests of GBS quantum computers give evidence for quantum
advantage with a decoherent target [62.997667081978825]
We use positive-P phase-space simulations of grouped count probabilities as a fingerprint for verifying multi-mode data.
We show how one can disprove faked data, and apply this to a classical count algorithm.
arXiv Detail & Related papers (2022-11-07T12:00:45Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - The Cost of Improving the Precision of the Variational Quantum
Eigensolver for Quantum Chemistry [0.0]
We study how various types of errors affect the variational quantum eigensolver (VQE)
We find that the optimal way of running the hybrid classical-quantum optimization is to allow some noise in intermediate energy evaluations.
arXiv Detail & Related papers (2021-11-09T06:24:52Z) - Variational Quantum Algorithms for Trace Distance and Fidelity
Estimation [7.247285982078057]
We introduce hybrid quantum-classical algorithms for two distance measures on near-term quantum devices.
First, we introduce the Variational Trace Distance Estimation (VTDE) algorithm.
Second, we introduce the Variational Fidelity Estimation (VFE) algorithm.
arXiv Detail & Related papers (2020-12-10T15:56:58Z) - Realistic simulation of quantum computation using unitary and
measurement channels [1.406995367117218]
We introduce a new simulation approach that relies on approximating the density matrix evolution by a sum of unitary and measurement channels.
This model shows an improvement of at least one order of magnitude in terms of accuracy compared to the best known approaches.
arXiv Detail & Related papers (2020-05-13T14:29:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.