A two-stage solution to quantum process tomography: error analysis and
optimal design
- URL: http://arxiv.org/abs/2402.08952v1
- Date: Wed, 14 Feb 2024 05:45:11 GMT
- Title: A two-stage solution to quantum process tomography: error analysis and
optimal design
- Authors: Shuixin Xiao, Yuanlong Wang, Jun Zhang, Daoyi Dong, Gary J. Mooney,
Ian R. Petersen, and Hidehiro Yonezawa
- Abstract summary: We propose a two-stage solution for both trace-preserving and non-trace-preserving quantum process tomography.
Our algorithm exhibits a computational complexity of $O(MLd2)$ where $d$ is the dimension of the quantum system.
Numerical examples and testing on IBM quantum devices are presented to demonstrate the performance and efficiency of our algorithm.
- Score: 6.648667887733229
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum process tomography is a critical task for characterizing the dynamics
of quantum systems and achieving precise quantum control. In this paper, we
propose a two-stage solution for both trace-preserving and non-trace-preserving
quantum process tomography. Utilizing a tensor structure, our algorithm
exhibits a computational complexity of $O(MLd^2)$ where $d$ is the dimension of
the quantum system and $ M $, $ L $ represent the numbers of different input
states and measurement operators, respectively. We establish an analytical
error upper bound and then design the optimal input states and the optimal
measurement operators, which are both based on minimizing the error upper bound
and maximizing the robustness characterized by the condition number. Numerical
examples and testing on IBM quantum devices are presented to demonstrate the
performance and efficiency of our algorithm.
Related papers
- Addressing the Readout Problem in Quantum Differential Equation Algorithms with Quantum Scientific Machine Learning [14.379311972506791]
We show that the readout of exact quantum states poses a bottleneck due to the complexity of tomography.
Treating outputs of quantum differential equation solvers as quantum data, we demonstrate that low-dimensional output can be extracted.
We apply this quantum scientific machine learning approach to classify solutions for shock wave detection and turbulence modeling.
arXiv Detail & Related papers (2024-11-21T16:09:08Z) - Quantum Realization of the Finite Element Method [0.0]
This paper presents a quantum algorithm for the solution of second-order linear elliptic partial differential equations discretized by $d$-linear finite elements.
An essential step in the construction is a BPX preconditioner, which transforms the linear system into a sufficiently well-conditioned one.
We provide a constructive proof demonstrating that, for any fixed dimension, our quantum algorithm can compute suitable functionals of the solution to a given tolerance.
arXiv Detail & Related papers (2024-03-28T15:44:20Z) - Two-stage solution for ancilla-assisted quantum process tomography:
error analysis and optimal design [7.578486693853657]
In this paper, we extend the two-stage solution, a method originally designed for standard QPT, to perform AAPT.
Our algorithm has $O(Md_A2d_B2)$ computational complexity where $ M is the type number of the measurement operators, $ d_A $ is the dimension of the quantum system of interest, and $d_B$ is the dimension of the ancilla system.
A numerical example on a phase damping process demonstrates the effectiveness of the optimal design and illustrates the theoretical error analysis.
arXiv Detail & Related papers (2023-10-31T12:47:03Z) - Quantum Semidefinite Programming with Thermal Pure Quantum States [0.5639904484784125]
We show that a quantization'' of the matrix multiplicative-weight algorithm can provide approximate solutions to SDPs quadratically faster than the best classical algorithms.
We propose a modification of this quantum algorithm and show that a similar speedup can be obtained by replacing the Gibbs-state sampler with the preparation of thermal pure quantum (TPQ) states.
arXiv Detail & Related papers (2023-10-11T18:00:53Z) - Multi-sequence alignment using the Quantum Approximate Optimization
Algorithm [0.0]
We present a Hamiltonian formulation and implementation of the Multiple Sequence Alignment problem with the variational Quantum Approximate Optimization Algorithm (QAOA)
We consider a small instance of our QAOA-MSA algorithm in both a quantum simulator and its performance on an actual quantum computer.
While the ideal solution to the instance of MSA investigated is shown to be the most probable state sampled for a shallow p5 quantum circuit, the level of noise in current devices is still a formidable challenge.
arXiv Detail & Related papers (2023-08-23T12:46:24Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
We provide a complete quantum circuit-level description of the algorithm from problem input to problem output.
We report the number of logical qubits and the quantity/depth of non-Clifford T-gates needed to run the algorithm.
arXiv Detail & Related papers (2022-11-22T18:54:48Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Detailed Account of Complexity for Implementation of Some Gate-Based
Quantum Algorithms [55.41644538483948]
In particular, some steps of the implementation, as state preparation and readout processes, can surpass the complexity aspects of the algorithm itself.
We present the complexity involved in the full implementation of quantum algorithms for solving linear systems of equations and linear system of differential equations.
arXiv Detail & Related papers (2021-06-23T16:33:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.