UAKNN: Label Distribution Learning via Uncertainty-Aware KNN
- URL: http://arxiv.org/abs/2504.01508v1
- Date: Wed, 02 Apr 2025 08:57:23 GMT
- Title: UAKNN: Label Distribution Learning via Uncertainty-Aware KNN
- Authors: Pu Wang, Yu Zhang, Zhuoran Zheng,
- Abstract summary: We design a novel LDL method called UAKNN, which has the advantages of the KNN algorithm with the benefits of uncertainty modeling.<n>Our method is significantly competitive on 12 benchmarks and that the inference speed of the model is well-suited for industrial-level applications.
- Score: 11.1011781530321
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Label Distribution Learning (LDL) aims to characterize the polysemy of an instance by building a set of descriptive degrees corresponding to the instance. In recent years, researchers seek to model to obtain an accurate label distribution by using low-rank, label relations, expert experiences, and label uncertainty estimation. In general, these methods are based on algorithms with parameter learning in a linear (including kernel functions) or deep learning framework. However, these methods are difficult to deploy and update online due to high training costs, limited scalability, and outlier sensitivity. To address this problem, we design a novel LDL method called UAKNN, which has the advantages of the KNN algorithm with the benefits of uncertainty modeling. In addition, we provide solutions to the dilemma of existing work on extremely label distribution spaces. Extensive experiments demonstrate that our method is significantly competitive on 12 benchmarks and that the inference speed of the model is well-suited for industrial-level applications.
Related papers
- Supervised Gradual Machine Learning for Aspect Category Detection [0.9857683394266679]
Aspect Category Detection (ACD) aims to identify implicit and explicit aspects in a given review sentence.
We propose a novel approach to tackle the ACD task by combining Deep Neural Networks (DNNs) with Gradual Machine Learning (GML) in a supervised setting.
arXiv Detail & Related papers (2024-04-08T07:21:46Z) - A Channel-ensemble Approach: Unbiased and Low-variance Pseudo-labels is Critical for Semi-supervised Classification [61.473485511491795]
Semi-supervised learning (SSL) is a practical challenge in computer vision.
Pseudo-label (PL) methods, e.g., FixMatch and FreeMatch, obtain the State Of The Art (SOTA) performances in SSL.
We propose a lightweight channel-based ensemble method to consolidate multiple inferior PLs into the theoretically guaranteed unbiased and low-variance one.
arXiv Detail & Related papers (2024-03-27T09:49:37Z) - CSOT: Curriculum and Structure-Aware Optimal Transport for Learning with
Noisy Labels [13.807759089431855]
Learning with noisy labels (LNL) poses a significant challenge in training a well-generalized model.
Recent advances have achieved impressive performance by identifying clean labels and corrupted labels for training.
We propose a novel optimal transport (OT) formulation, called Curriculum and Structure-aware Optimal Transport (CSOT)
arXiv Detail & Related papers (2023-12-11T09:12:50Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labeling has emerged as a popular and effective approach for utilizing unlabeled data.
This paper proposes a novel solution called Class-Aware Pseudo-Labeling (CAP) that performs pseudo-labeling in a class-aware manner.
arXiv Detail & Related papers (2023-05-04T12:52:18Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Delving Deep into Label Smoothing [112.24527926373084]
Label smoothing is an effective regularization tool for deep neural networks (DNNs)
We present an Online Label Smoothing (OLS) strategy, which generates soft labels based on the statistics of the model prediction for the target category.
arXiv Detail & Related papers (2020-11-25T08:03:11Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z) - COLAM: Co-Learning of Deep Neural Networks and Soft Labels via
Alternating Minimization [60.07531696857743]
Co-Learns DNNs and soft labels through Alternating Minimization of two objectives.
We propose COLAM framework that Co-Learns DNNs and soft labels through Alternating Minimization of two objectives.
arXiv Detail & Related papers (2020-04-26T17:50:20Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
Partial-label learning (PLL) is a typical weakly supervised learning problem, where each training instance is equipped with a set of candidate labels among which only one is the true label.
Most existing methods elaborately designed as constrained optimizations that must be solved in specific manners, making their computational complexity a bottleneck for scaling up to big data.
This paper proposes a novel framework of classifier with flexibility on the model and optimization algorithm.
arXiv Detail & Related papers (2020-02-19T08:35:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.