論文の概要: Advancing AI-Scientist Understanding: Multi-Agent LLMs with Interpretable Physics Reasoning
- arxiv url: http://arxiv.org/abs/2504.01911v2
- Date: Mon, 18 Aug 2025 08:28:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 14:49:09.893625
- Title: Advancing AI-Scientist Understanding: Multi-Agent LLMs with Interpretable Physics Reasoning
- Title(参考訳): AI-サイエント理解の促進:解釈可能な物理推論を用いたマルチエージェントLLM
- Authors: Yinggan Xu, Hana Kimlee, Yijia Xiao, Di Luo,
- Abstract要約: 大規模言語モデル(LLM)は、記号操作、数値計算、科学的推論の支援によって物理学研究においてますます重要な役割を担っている。
我々は,3つの重要なモジュールを通じてAIと人間科学者の協調を促進する,新しい多エージェントLLM物理学者フレームワークを導入する。
ケーススタディでは,本手法が解釈可能性を大幅に向上し,体系的な検証が可能となり,物理問題解決と発見における人間とAIの連携が向上することを示した。
- 参考スコア(独自算出の注目度): 0.7499722271664147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are playing an increasingly important role in physics research by assisting with symbolic manipulation, numerical computation, and scientific reasoning. However, ensuring the reliability, transparency, and interpretability of their outputs remains a major challenge. In this work, we introduce a novel multi-agent LLM physicist framework that fosters collaboration between AI and human scientists through three key modules: a reasoning module, an interpretation module, and an AI-scientist interaction module. Recognizing that effective physics reasoning demands logical rigor, quantitative accuracy, and alignment with established theoretical models, we propose an interpretation module that employs a team of specialized LLM agents-including summarizers, model builders, visualization tools, and testers-to systematically structure LLM outputs into transparent, physically grounded science models. A case study demonstrates that our approach significantly improves interpretability, enables systematic validation, and enhances human-AI collaboration in physics problem-solving and discovery. Our work bridges free-form LLM reasoning with interpretable, executable models for scientific analysis, enabling more transparent and verifiable AI-augmented research.
- Abstract(参考訳): 大規模言語モデル(LLM)は、記号操作、数値計算、科学的推論の支援によって物理学研究においてますます重要な役割を担っている。
しかしながら、アウトプットの信頼性、透明性、解釈可能性を保証することは、依然として大きな課題である。
本稿では、推論モジュール、解釈モジュール、AI-科学相互作用モジュールという3つの重要なモジュールを通じて、AIと人間科学者の協調を促進する新しいマルチエージェントLLM物理学者フレームワークを紹介する。
実効物理推論が論理的厳密性、量的精度、確立された理論モデルとの整合性を要求していることを認識し、我々は、特殊なLCMエージェントチーム(要約器、モデルビルダー、可視化ツール、およびテスタから体系的にLLM出力を透明で物理的に基礎付けられた科学モデルに構造化する解釈モジュールを提案する。
ケーススタディでは,本手法が解釈可能性を大幅に向上し,体系的な検証が可能となり,物理問題解決と発見における人間とAIの連携が向上することを示した。
我々の研究は、科学分析のための解釈可能な実行可能なモデルで自由形式のLCM推論を橋渡しし、より透明で検証可能なAIによる研究を可能にします。
関連論文リスト
- Video Event Reasoning and Prediction by Fusing World Knowledge from LLMs with Vision Foundation Models [10.1080193179562]
現在の理解モデルは「何」を認識するのに優れているが、因果推論や将来の予測のような高いレベルの認知タスクでは不足している。
本稿では,知識駆動型推論コアとして機能するLarge Language Model (LLM)を用いて,視覚の深層認識のための強力なビジョン基礎モデルと融合する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-07-08T09:43:17Z) - Computational Thinking Reasoning in Large Language Models [69.28428524878885]
計算思考モデル(CTM)は、計算思考パラダイムを大規模言語モデル(LLM)に組み込んだ新しいフレームワークである。
ライブコード実行は推論プロセスにシームレスに統合され、CTMが計算によって考えることができる。
CTMは、精度、解釈可能性、一般化可能性の観点から、従来の推論モデルとツール拡張ベースラインを上回っている。
論文 参考訳(メタデータ) (2025-06-03T09:11:15Z) - Perception, Reason, Think, and Plan: A Survey on Large Multimodal Reasoning Models [79.52467430114805]
推論は知性の中心にあり、決定し、結論を導き、ドメインをまたいで一般化する能力を形成する。
人工知能において、システムがオープンで不確実でマルチモーダルな環境でますます機能するにつれて、推論は堅牢で適応的な行動を可能にするために不可欠となる。
大規模マルチモーダル推論モデル(LMRM)は、テキスト、画像、オーディオ、ビデオなどのモダリティを統合し、複雑な推論機能をサポートする、有望なパラダイムとして登場した。
論文 参考訳(メタデータ) (2025-05-08T03:35:23Z) - Modular Machine Learning: An Indispensable Path towards New-Generation Large Language Models [45.05285463251872]
我々は,新世代の大規模言語モデル(LLM)に不可欠なアプローチとして,新しい学習パラダイム - Modular Machine Learning (MML) を導入する。
MMLは、LLMの複雑な構造を、モジュラー表現、モジュラーモデル、モジュラー推論の3つの相互依存コンポーネントに分解する。
本稿では,非絡み合い表現学習,ニューラルアーキテクチャ探索,ニューロシンボリック学習などの高度な技術を活用して,MLに基づくLLMの実現の可能性を示す。
論文 参考訳(メタデータ) (2025-04-28T17:42:02Z) - LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
本稿では、類似推論のための制御された評価環境を導入することにより、探索的アプローチを採用する。
帰納的,帰納的,帰納的,帰納的な推論パイプラインの比較力学を解析する。
仮説選択や検証,洗練といった高度なパラダイムを考察し,論理的推論のスケールアップの可能性を明らかにする。
論文 参考訳(メタデータ) (2025-02-16T15:54:53Z) - MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science [62.96434290874878]
現在のMLLM(Multi-Modal Large Language Models)は、一般的な視覚的推論タスクにおいて強力な機能を示している。
我々は,MLLMに基づく物理知覚とシミュレーションによるマルチモーダル科学推論(MAPS)という新しいフレームワークを開発した。
MAPSは、専門家レベルのマルチモーダル推論タスクを物理的知覚モデル(PPM)を介して物理図理解に分解し、シミュレータを介して物理的知識で推論する。
論文 参考訳(メタデータ) (2025-01-18T13:54:00Z) - Large Physics Models: Towards a collaborative approach with Large Language Models and Foundation Models [8.320153035338418]
本稿では、物理固有の大規模AIモデルの開発と評価のためのアイデアを探求し、潜在的ロードマップを提供する。
これらのモデルは、Large Language Models (LLMs) のような基礎モデルに基づいており、物理学研究の要求に対応するように調整されている。
論文 参考訳(メタデータ) (2025-01-09T17:11:22Z) - In Defence of Post-hoc Explainability [0.0]
我々は、科学AIにおけるポストホック解釈可能性の哲学的枠組みとして計算補間主義(CI)を紹介した。
ポストホック合理化が信頼性のあるパフォーマンスと共存する人間の専門知識と平行して描くことで、CIは経験的検証によって適切に拘束された場合、構造化されたモデル解釈を通じて科学的知識が生まれることを証明している。
論文 参考訳(メタデータ) (2024-12-23T06:22:03Z) - Interpreting token compositionality in LLMs: A robustness analysis [10.777646083061395]
Constituent-Aware Pooling (CAP)は、大規模言語モデルが言語構造をどのように処理するかを分析するために設計された方法論である。
CAPは様々なモデルレベルで構成型プールを通してモデル活性化に介入する。
本研究は,合成セマンティクス処理とモデル解釈可能性に関する,現在のトランスフォーマーアーキテクチャの基本的制約を明らかにする。
論文 参考訳(メタデータ) (2024-10-16T18:10:50Z) - The Buffer Mechanism for Multi-Step Information Reasoning in Language Models [52.77133661679439]
大きな言語モデルの内部的推論メカニズムを調べることは、よりよいモデルアーキテクチャとトレーニング戦略を設計するのに役立ちます。
本研究では,トランスフォーマーモデルが垂直思考戦略を採用するメカニズムを解明するために,シンボリックデータセットを構築した。
我々は,GPT-2モデルに必要なトレーニング時間を75%削減し,モデルの推論能力を高めるために,ランダムな行列ベースアルゴリズムを提案した。
論文 参考訳(メタデータ) (2024-05-24T07:41:26Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
本稿では,大規模言語モデルの知識駆動型抽象推論能力をシミュレーションの計算力で強化することを提案する。
本稿では,2段階最適化フレームワークであるSGA(Scientific Generative Agent)を紹介する。
法発見と分子設計における枠組みの有効性を実証するための実験を行った。
論文 参考訳(メタデータ) (2024-05-16T03:04:10Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - Disentangling Reasoning Capabilities from Language Models with
Compositional Reasoning Transformers [72.04044221898059]
ReasonFormerは、人間のモジュール的および構成的推論プロセスを反映するための統一的な推論フレームワークである。
表現モジュール(自動思考)と推論モジュール(制御思考)は、異なるレベルの認知を捉えるために切り離される。
統一された推論フレームワークは、単一のモデルで複数のタスクを解決し、エンドツーエンドでトレーニングされ、推論される。
論文 参考訳(メタデータ) (2022-10-20T13:39:55Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。