A Pathology-Based Machine Learning Method to Assist in Epithelial
Dysplasia Diagnosis
- URL: http://arxiv.org/abs/2204.03572v1
- Date: Thu, 7 Apr 2022 16:45:28 GMT
- Title: A Pathology-Based Machine Learning Method to Assist in Epithelial
Dysplasia Diagnosis
- Authors: Karoline da Rocha, Jos\'e C. M. Bermudez, Elena R. C. Rivero, M\'arcio
H. Costa
- Abstract summary: The Epithelial Dysplasia (ED) is a tissue alteration commonly present in lesions preceding oral cancer.
This study proposes a method to design a low computational cost classification system to support the detection of dysplastic epithelia.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Epithelial Dysplasia (ED) is a tissue alteration commonly present in
lesions preceding oral cancer, being its presence one of the most important
factors in the progression toward carcinoma. This study proposes a method to
design a low computational cost classification system to support the detection
of dysplastic epithelia, contributing to reduce the variability of pathologist
assessments. We employ a multilayer artificial neural network (MLP-ANN) and
defining the regions of the epithelium to be assessed based on the knowledge of
the pathologist. The performance of the proposed solution was statistically
evaluated. The implemented MLP-ANN presented an average accuracy of 87%, with a
variability much inferior to that obtained from three trained evaluators.
Moreover, the proposed solution led to results which are very close to those
obtained using a convolutional neural network (CNN) implemented by transfer
learning, with 100 times less computational complexity. In conclusion, our
results show that a simple neural network structure can lead to a performance
equivalent to that of much more complex structures, which are routinely used in
the literature.
Related papers
- Evaluating LeNet Algorithms in Classification Lung Cancer from
Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases [0.0]
LeNet, a deep learning model, is used in this study to detect lung tumors.
The proposed system was evaluated on Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases datasets.
arXiv Detail & Related papers (2023-05-19T19:23:08Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
We propose a deep neural network that classifies the tissues from the phase and intensity data of complex OCT signals acquired at the needle tip.
We show that with 10% of the training set, our proposed pretraining strategy helps the model achieve an F1 score of 0.84 whereas the model achieves an F1 score of 0.60 without it.
arXiv Detail & Related papers (2023-04-26T14:11:04Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
We propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy.
We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning.
Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
arXiv Detail & Related papers (2022-11-08T11:50:31Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - A Computer-Aided Diagnosis System for Breast Pathology: A Deep Learning
Approach with Model Interpretability from Pathological Perspective [6.583997407109283]
We develop a computer-aided diagnosis (CAD) system using deep learning approaches for lesion detection and classification.
The deep features being distinguishing in classification from the convolutional neural networks (CNN) are demonstrated in this study to provide comprehensive interpretability.
arXiv Detail & Related papers (2021-08-05T14:43:59Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
We propose a novel PCa detection network that incorporates a lesion-level cost-sensitive loss and an additional slice-level loss based on a lesion-to-slice mapping function.
Our experiments based on 290 clinical patients concludes that 1) The lesion-level FNR was effectively reduced from 0.19 to 0.10 and the lesion-level FPR was reduced from 1.03 to 0.66 by changing the lesion-level cost.
arXiv Detail & Related papers (2021-06-04T09:51:27Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - A Feasibility study for Deep learning based automated brain tumor
segmentation using Magnetic Resonance Images [0.0]
A deep convolutional neural network (CNN) based classification network and Faster RCNN based localization network were developed for brain tumor MR image classification and tumor localization.
Overall performance of the proposed tumor segmentation architecture, was analyzed using objective quality parameters including Accuracy, Boundary Displacement Error (BDE), Dice score and confidence interval.
It was observed that the confidence level of our segmented output was in a similar range to that of experts.
arXiv Detail & Related papers (2020-12-22T12:11:42Z) - Encoding Clinical Priori in 3D Convolutional Neural Networks for
Prostate Cancer Detection in bpMRI [1.0312968200748118]
We introduce a probabilistic population prior which captures the spatial prevalence and zonal distinction of clinically significant prostate cancer (csPCa)
We train 3D adaptations of the U-Net, U-SEResNet, UNet++ and Attention U-Net using 800 institutional training-validation scans, paired with radiologically-estimated annotations and our computed prior.
For 200 independent testing bpMRI scans with histologically-confirmed delineations of csPCa, our proposed method of encoding clinical priori demonstrates a strong ability to improve patient-based diagnosis.
arXiv Detail & Related papers (2020-10-31T13:10:58Z) - A Novel and Efficient Tumor Detection Framework for Pancreatic Cancer
via CT Images [21.627818410241552]
A novel and efficient pancreatic tumor detection framework is proposed in this paper.
The contribution of the proposed method mainly consists of three components: Augmented Feature Pyramid networks, Self-adaptive Feature Fusion and a Dependencies Computation Module.
Experimental results achieve competitive performance in detection with the AUC of 0.9455, which outperforms other state-of-the-art methods to our best of knowledge.
arXiv Detail & Related papers (2020-02-11T15:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.