論文の概要: Information Gain Is Not All You Need
- arxiv url: http://arxiv.org/abs/2504.01980v3
- Date: Sun, 20 Apr 2025 13:01:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 12:50:04.021663
- Title: Information Gain Is Not All You Need
- Title(参考訳): インフォメーションゲインは必要なものだけではない
- Authors: Ludvig Ericson, José Pedro, Patric Jensfelt,
- Abstract要約: 本稿では,情報ゲインが品質制約探索における最適化目標として機能すべきでないことを論じる。
本稿では,ロボットの近距離と他のフロンティアからの遠距離とのトレードオフに基づいてフロンティアを選択する,新しい距離優位性を提案する。
- 参考スコア(独自算出の注目度): 3.053906384469777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous exploration in mobile robotics often involves a trade-off between two objectives: maximizing environmental coverage and minimizing the total path length. In the widely used information gain paradigm, exploration is guided by the expected value of observations. While this approach is effective under budget-constrained settings--where only a limited number of observations can be made--it fails to align with quality-constrained scenarios, in which the robot must fully explore the environment to a desired level of certainty or quality. In such cases, total information gain is effectively fixed, and maximizing it per step can lead to inefficient, greedy behavior and unnecessary backtracking. This paper argues that information gain should not serve as an optimization objective in quality-constrained exploration. Instead, it should be used to filter viable candidate actions. We propose a novel heuristic, distance advantage, which selects candidate frontiers based on a trade-off between proximity to the robot and remoteness from other frontiers. This heuristic aims to reduce future detours by prioritizing exploration of isolated regions before the robot's opportunity to visit them efficiently has passed. We evaluate our method in simulated environments against classical frontier-based exploration and gain-maximizing approaches. Results show that distance advantage significantly reduces total path length across a variety of environments, both with and without access to prior map predictions. Our findings challenge the assumption that more accurate gain estimation improves performance and offer a more suitable alternative for the quality-constrained exploration paradigm.
- Abstract(参考訳): 移動ロボットにおける自律的な探索は、環境被覆の最大化と全経路長の最小化という2つの目的のトレードオフを伴うことが多い。
広く使われている情報ゲインパラダイムでは、観測の期待値によって探索が導かれる。
このアプローチは、限られた数の観測しかできない予算制約の環境で有効であるが、品質制約のあるシナリオと一致しない。
このような場合、全情報ゲインは効果的に固定され、ステップごとの最大化は非効率、欲張り、不要なバックトラックにつながる可能性がある。
本稿では,情報ゲインが品質制約探索における最適化目標として機能すべきでないことを論じる。
代わりに、実行可能な候補アクションをフィルタリングするために使用するべきです。
本稿では,ロボットに近接する距離と,他のフロンティアからの遠距離とのトレードオフに基づいて,候補フロンティアを選択する新しいヒューリスティックな距離優位性を提案する。
このヒューリスティックは、ロボットが効率的に訪問する機会が経過する前に、孤立した領域の探索を優先することで、将来の遠回りを減らすことを目的としている。
本研究では,古典的フロンティアに基づく探索とゲイン最大化手法に対するシミュレーション環境における手法の評価を行った。
その結果, 距離の優位性は, 事前の地図予測へのアクセスの有無にかかわらず, 様々な環境における全経路長を著しく減少させることがわかった。
本研究は,より正確なゲイン推定により性能が向上し,品質に制約のある探索パラダイムに対して,より適切な代替手段が提供されるという仮定に挑戦する。
関連論文リスト
- Offline Model-Based Optimization: Comprehensive Review [61.91350077539443]
オフライン最適化は、オフラインデータセットのみを使用してブラックボックス機能の最適化を目標とする、科学とエンジニアリングの基本的な課題である。
モデルベース最適化の最近の進歩は、オフライン固有の代理モデルと生成モデルを開発するために、ディープニューラルネットワークの一般化能力を活用している。
科学的な発見を加速させる効果が増大しているにもかかわらず、この分野は包括的なレビューを欠いている。
論文 参考訳(メタデータ) (2025-03-21T16:35:02Z) - Cost-Aware Query Policies in Active Learning for Efficient Autonomous Robotic Exploration [0.0]
本稿では,動作コストを考慮しつつ,ガウス過程回帰のためのALアルゴリズムを解析する。
距離制約を持つ伝統的な不確実性計量は、軌道距離上のルート平均二乗誤差を最小化する。
論文 参考訳(メタデータ) (2024-10-31T18:35:03Z) - No Regrets: Investigating and Improving Regret Approximations for Curriculum Discovery [53.08822154199948]
非教師なし環境設計(UED)手法は、エージェントがイン・オブ・アウト・ディストリビューションタスクに対して堅牢になることを約束する適応的カリキュラムとして近年注目を集めている。
本研究は,既存のUEDメソッドがいかにトレーニング環境を選択するかを検討する。
本研究では,学習性の高いシナリオを直接訓練する手法を開発した。
論文 参考訳(メタデータ) (2024-08-27T14:31:54Z) - From Simulations to Reality: Enhancing Multi-Robot Exploration for Urban
Search and Rescue [46.377510400989536]
本研究では,コミュニケーションが限られ,位置情報がない未知の環境での効率的なマルチロボット探索のための新しいハイブリッドアルゴリズムを提案する。
連続した目標情報なしでシナリオに合うように、ローカルなベストとグローバルなベストポジションを再定義する。
提示された研究は、限られた情報と通信能力を持つシナリオにおけるマルチロボット探索の強化を約束している。
論文 参考訳(メタデータ) (2023-11-28T17:05:25Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Online Learning with Costly Features in Non-stationary Environments [6.009759445555003]
シーケンシャルな意思決定の問題では、長期的な報酬を最大化することが第一の目標である。
現実世界の問題では、有益な情報を集めるのにしばしばコストがかかる。
時間内にサブ線形後悔を保証するアルゴリズムを開発する。
論文 参考訳(メタデータ) (2023-07-18T16:13:35Z) - Learning Coverage Paths in Unknown Environments with Deep Reinforcement Learning [17.69984142788365]
被覆経路計画 (CPP) は、制限された領域の自由空間全体をカバーする経路を見つける問題である。
この課題に対する強化学習の適性について検討する。
本稿では,フロンティアに基づく計算可能なエゴセントリックマップ表現と,全変動に基づく新たな報酬項を提案する。
論文 参考訳(メタデータ) (2023-06-29T14:32:06Z) - TransPath: Learning Heuristics For Grid-Based Pathfinding via
Transformers [64.88759709443819]
探索の効率を顕著に向上させると考えられる,インスタンス依存のプロキシを学習することを提案する。
私たちが最初に学ぶことを提案するプロキシは、補正係数、すなわち、インスタンスに依存しないコスト・ツー・ゴの見積もりと完璧な見積もりの比率である。
第2のプロキシはパス確率であり、グリッドセルが最も短いパスに横たわっている可能性を示している。
論文 参考訳(メタデータ) (2022-12-22T14:26:11Z) - Discovering New Intents Using Latent Variables [51.50374666602328]
本稿では,意図の割り当てを潜伏変数として扱う意図を発見するための確率的フレームワークを提案する。
E-step, we conducting intents and explore the intrinsic structure of unlabeled data by the rear of intent assignments。
M段階において、ラベル付きデータの識別を最適化することにより、既知の意図から伝達される事前知識の忘れを緩和する。
論文 参考訳(メタデータ) (2022-10-21T08:29:45Z) - Incremental 3D Scene Completion for Safe and Efficient Exploration
Mapping and Planning [60.599223456298915]
本研究では,情報,安全,解釈可能な地図作成と計画に3次元シーン補完を活用することによって,深層学習を探索に統合する新しい手法を提案する。
本手法は,地図の精度を最小限に抑えることで,ベースラインに比べて環境のカバレッジを73%高速化できることを示す。
最終地図にシーン完了が含まれていなくても、ロボットがより情報的な経路を選択するように誘導し、ロボットのセンサーでシーンの測定を35%高速化できることが示される。
論文 参考訳(メタデータ) (2022-08-17T14:19:33Z) - Off-Policy Evaluation with Online Adaptation for Robot Exploration in
Challenging Environments [6.4617907823964345]
本稿では、状態値関数によって測定された「良い」状態がどのようにあるかを学習し、ロボット探査のガイダンスを提供する。
実世界のデータに関するオフラインのモンテカルロトレーニングと、トレーニングされた値推定器を最適化するために時間差分(TD)オンライン適応を実行する。
以上の結果から,ロボットが将来の状態を予測し,ロボット探索の指針となることが示唆された。
論文 参考訳(メタデータ) (2022-04-07T00:46:57Z) - Learning to Plan Optimistically: Uncertainty-Guided Deep Exploration via
Latent Model Ensembles [73.15950858151594]
本稿では,不確実な長期報酬に直面した最適化による深層探査を可能にするLOVE(Latent Optimistic Value Exploration)を提案する。
潜在世界モデルと値関数推定を組み合わせ、無限水平リターンを予測し、アンサンブルにより関連する不確実性を回復する。
連続行動空間における視覚ロボット制御タスクにLOVEを適用し、最先端や他の探査目標と比較して、平均20%以上のサンプル効率の改善を実証する。
論文 参考訳(メタデータ) (2020-10-27T22:06:57Z) - Temporal Difference Uncertainties as a Signal for Exploration [76.6341354269013]
強化学習における探索の効果的なアプローチは、最適な政策に対するエージェントの不確実性に依存することである。
本稿では,評価値のバイアスや時間的に矛盾する点を強調した。
本稿では,時間差誤差の分布の導出に依存する値関数の不確かさを推定する手法を提案する。
論文 参考訳(メタデータ) (2020-10-05T18:11:22Z) - Autonomous Exploration Under Uncertainty via Deep Reinforcement Learning
on Graphs [5.043563227694137]
本研究では,移動ロボットが事前の未知環境におけるランドマークの正確なマッピングをリアルタイムで効率的に行うという自律的な探索問題を考察する。
本稿では,グラフニューラルネットワーク(GNN)と深部強化学習(DRL)を併用した新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-24T16:50:41Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - Dynamic Subgoal-based Exploration via Bayesian Optimization [7.297146495243708]
スパース・リワードナビゲーション環境における強化学習は困難であり、効果的な探索の必要性を生じさせる。
本稿では,動的サブゴールに基づく探索手法のクラスを効率的に探索する,費用対効果を考慮したベイズ最適化手法を提案する。
実験により、新しいアプローチは、多くの問題領域で既存のベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2019-10-21T04:24:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。