論文の概要: Self-Resource Allocation in Multi-Agent LLM Systems
- arxiv url: http://arxiv.org/abs/2504.02051v1
- Date: Wed, 02 Apr 2025 18:15:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:57:55.359046
- Title: Self-Resource Allocation in Multi-Agent LLM Systems
- Title(参考訳): マルチエージェントLLMシステムにおける自己資源配置
- Authors: Alfonso Amayuelas, Jingbo Yang, Saaket Agashe, Ashwin Nagarajan, Antonis Antoniades, Xin Eric Wang, William Wang,
- Abstract要約: 本稿では,LLMがコスト,効率,性能などの要因を考慮して,複数のエージェント間で効率的に計算タスクを割り当てる方法について検討する。
実験により, LLM は資源割り当てタスクにおいて高い妥当性と精度が得られることを示した。
その結果,コンカレントアクションの処理におけるオーケストレータ手法よりも効率が向上し,エージェントの利用効率が向上することがわかった。
- 参考スコア(独自算出の注目度): 17.125470138044978
- License:
- Abstract: With the development of LLMs as agents, there is a growing interest in connecting multiple agents into multi-agent systems to solve tasks concurrently, focusing on their role in task assignment and coordination. This paper explores how LLMs can effectively allocate computational tasks among multiple agents, considering factors such as cost, efficiency, and performance. In this work, we address key questions, including the effectiveness of LLMs as orchestrators and planners, comparing their effectiveness in task assignment and coordination. Our experiments demonstrate that LLMs can achieve high validity and accuracy in resource allocation tasks. We find that the planner method outperforms the orchestrator method in handling concurrent actions, resulting in improved efficiency and better utilization of agents. Additionally, we show that providing explicit information about worker capabilities enhances the allocation strategies of planners, particularly when dealing with suboptimal workers.
- Abstract(参考訳): エージェントとしてのLLMの開発に伴い、複数のエージェントをマルチエージェントシステムに接続してタスクを同時に解決することへの関心が高まっており、タスクの割り当てや調整における役割に焦点が当てられている。
本稿では,LLMがコスト,効率,性能などの要因を考慮して,複数のエージェント間で効率的に計算タスクを割り当てる方法について検討する。
本研究では,LLMがオーケストレータやプランナーとして有効であること,タスクの割り当てや調整においての有効性を比較することなど,重要な課題に対処する。
実験により, LLM は資源割り当てタスクにおいて高い妥当性と精度が得られることを示した。
その結果,コンカレントアクションの処理におけるオーケストレータ手法よりも効率が向上し,エージェントの利用効率が向上することがわかった。
さらに,労働者能力に関する明示的な情報を提供することによって,特に準最適労働者を扱う場合,プランナーの配置戦略が向上することを示す。
関連論文リスト
- Dynamic Ensemble Reasoning for LLM Experts [35.774197263383996]
本研究では,動的入力を前提とした複数のLLMエキスパートの強みを統合するために,DERと呼ばれる動的アンサンブル推論パラダイムを提案する。
提案手法では,最先端のベースラインに比べて計算資源が少ないため,性能が向上する。
論文 参考訳(メタデータ) (2024-12-10T12:05:56Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [66.9481561915524]
MALT(Multi-Agent LLM Training)は、推論プロセスを生成、検証、改善ステップに分割する、新しいポストトレーニング戦略である。
MATH、GSM8K、CSQAでは、MALTは、それぞれ15.66%、7.42%、9.40%の相対的な改善で同じベースラインLLMを上回っている。
論文 参考訳(メタデータ) (2024-12-02T19:30:36Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Guiding Multi-agent Multi-task Reinforcement Learning by a Hierarchical Framework with Logical Reward Shaping [16.5526277899717]
本研究の目的は,論理報酬形成を伴う多エージェント協調アルゴリズムを設計することである。
Minecraftのような環境下で様々な種類のタスクで実験が行われてきた。
論文 参考訳(メタデータ) (2024-11-02T09:03:23Z) - Interpreting and Improving Large Language Models in Arithmetic Calculation [72.19753146621429]
大規模言語モデル(LLM)は、多くのアプリケーションにまたがる顕著な可能性を示している。
本研究では,LLMが計算を行う特定のメカニズムを明らかにする。
LLMの計算性能を高めるために、これらの必須ヘッド/MLPを選択的に微調整する潜在的な利点について検討する。
論文 参考訳(メタデータ) (2024-09-03T07:01:46Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
本稿では,Large Language Models (LLM) 内の複数のエージェント間の相互作用について,プログラミングおよびコーディングタスクの文脈で検討する。
我々はAutoGenフレームワークを利用してエージェント間の通信を容易にし、各セットアップの40のランダムランからの成功率に基づいて異なる構成を評価する。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - MetaAgents: Simulating Interactions of Human Behaviors for LLM-based
Task-oriented Coordination via Collaborative Generative Agents [27.911816995891726]
我々は,一貫した行動パターンと課題解決能力を備えたLLMベースのエージェントを,協調的生成エージェントとして導入する。
本研究では,人間のような推論能力と専門的スキルを備えた協調生成エージェントを実現する新しい枠組みを提案する。
我々の研究は、タスク指向の社会シミュレーションにおける大規模言語モデルの役割と進化に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-10-10T10:17:58Z) - LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning [122.47938710284784]
協調型MARLにおける動的サブタスク代入(LDSA)を学習するための新しいフレームワークを提案する。
エージェントを異なるサブタスクに合理的に割り当てるために,能力に基づくサブタスク選択戦略を提案する。
LDSAは、より優れたコラボレーションのために、合理的で効果的なサブタスクの割り当てを学習していることを示す。
論文 参考訳(メタデータ) (2022-05-05T10:46:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。