論文の概要: On Model Protection in Federated Learning against Eavesdropping Attacks
- arxiv url: http://arxiv.org/abs/2504.02114v1
- Date: Wed, 02 Apr 2025 20:20:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:58:35.266596
- Title: On Model Protection in Federated Learning against Eavesdropping Attacks
- Title(参考訳): 盗聴攻撃に対するフェデレーション学習におけるモデル保護について
- Authors: Dipankar Maity, Kushal Chakrabarti,
- Abstract要約: 我々のモデルでは、敵はクライアントからサーバに送信されたモデル更新をインターセプトすることができる。
本研究では,クライアント選択の確率,局所的目的関数の構造,盗聴者の能力といった様々な要因が,全体的な保護レベルに与える影響について検討する。
- 参考スコア(独自算出の注目度): 1.565361244756411
- License:
- Abstract: In this study, we investigate the protection offered by federated learning algorithms against eavesdropping adversaries. In our model, the adversary is capable of intercepting model updates transmitted from clients to the server, enabling it to create its own estimate of the model. Unlike previous research, which predominantly focuses on safeguarding client data, our work shifts attention protecting the client model itself. Through a theoretical analysis, we examine how various factors, such as the probability of client selection, the structure of local objective functions, global aggregation at the server, and the eavesdropper's capabilities, impact the overall level of protection. We further validate our findings through numerical experiments, assessing the protection by evaluating the model accuracy achieved by the adversary. Finally, we compare our results with methods based on differential privacy, underscoring their limitations in this specific context.
- Abstract(参考訳): 本研究では,eavesdropping敵に対するフェデレーション学習アルゴリズムによる保護について検討した。
我々のモデルでは、敵はクライアントからサーバに送信されたモデル更新をインターセプトすることができ、モデルに対する独自の見積もりを作成することができる。
クライアントデータの保護に重点を置く以前の調査とは異なり、当社の作業は、クライアントモデル自体を保護することに注意を移します。
理論的分析により,クライアント選択の確率,局所目的関数の構造,サーバにおけるグローバルアグリゲーション,盗聴者の能力といった様々な要因が,全体的な保護レベルに与える影響について検討する。
さらに, 数値実験により, 敵が達成したモデルの精度を評価することにより, 保護効果を評価する。
最後に、これらの結果と差分プライバシーに基づく手法を比較し、それらの制約をこの特定の文脈で強調する。
関連論文リスト
- Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Turning Privacy-preserving Mechanisms against Federated Learning [22.88443008209519]
我々は、連邦学習のための最先端の防衛を無効化できる攻撃を設計する。
提案した攻撃には、2つの動作モードが含まれており、第1は収束抑制(逆モード)に焦点を当て、第2はグローバルフェデレーションモデル(バックドアモード)に誤評価インジェクションを構築することを目的としている。
実験の結果,バックドアモードで実施したテストの93%のケースにおいて,両モードにおける攻撃の有効性が示され,敵モードと完全有効バックドアの全テストにおいて平均60%のパフォーマンス低下が回復した。
論文 参考訳(メタデータ) (2023-05-09T11:43:31Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
フェデレートラーニングは、さまざまな参加者の間で共通のモデルを協調的に訓練するための、広く使われているパラダイムとなっている。
多くの攻撃は、メンバーシップ、資産、または参加者データの完全な再構築のような機密情報を推測することは依然として可能であることを示した。
単純な線形モデルでは、集約されたモデル更新からクライアント固有のプロパティを効果的にキャプチャできることが示される。
論文 参考訳(メタデータ) (2023-03-07T14:11:01Z) - Active Membership Inference Attack under Local Differential Privacy in
Federated Learning [18.017082794703555]
フェデレートラーニング(FL)は元々、データプライバシ保護を備えたクライアント間での協調学習のフレームワークとして見なされていた。
本稿では,FLにおける不適切なサーバによって実行される新たなアクティブメンバシップ推論(AMI)攻撃を提案する。
論文 参考訳(メタデータ) (2023-02-24T15:21:39Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Robust Transferable Feature Extractors: Learning to Defend Pre-Trained
Networks Against White Box Adversaries [69.53730499849023]
また, 予測誤差を誘導するために, 逆例を独立に学習した別のモデルに移すことが可能であることを示す。
本稿では,頑健な伝達可能な特徴抽出器(RTFE)と呼ばれる,ディープラーニングに基づく事前処理機構を提案する。
論文 参考訳(メタデータ) (2022-09-14T21:09:34Z) - Lessons Learned: Defending Against Property Inference Attacks [0.0]
本研究は,資産推測攻撃(PIA)に対する複数の防衛戦略について検討し,評価する。
PIAは、基礎となるトレーニングデータの統計的特性、例えば、医療訓練データセットにおける男女比を明らかにすることを目的としている。
プロパティアンラーニングによる実験は、プロパティアンラーニングが一般化できないこと、すなわち、PIAのクラス全体に対する保護が示される。
論文 参考訳(メタデータ) (2022-05-18T09:38:37Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - On Primes, Log-Loss Scores and (No) Privacy [8.679020335206753]
本稿では,この追加情報により,任意のデータポイントのメンバシップを1つのクエリで完全精度で推測できることを示す。
我々のアプローチは、攻撃モデルのトレーニングや、敵とのサイド知識へのアクセスを妨げます。
論文 参考訳(メタデータ) (2020-09-17T23:35:12Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
本手法は,他の標準メンバーシップ相手と異なり,被害者モデルのスコアにアクセスできないような厳格な制限の下で動作可能な,新しいメンバーシップ推論手法であるサンプリングアタックを導入する。
ラベルのみを公開している被害者モデルでは,攻撃のサンプリングが引き続き可能であり,攻撃者はその性能の最大100%を回復できることを示す。
防衛においては,被害者モデルのトレーニング中の勾配摂動と予測時の出力摂動の形式で差分プライバシーを選択する。
論文 参考訳(メタデータ) (2020-09-01T12:54:54Z) - Systematic Evaluation of Privacy Risks of Machine Learning Models [41.017707772150835]
メンバーシップ推論攻撃に対する事前の取り組みは、プライバシーリスクを著しく過小評価する可能性があることを示す。
まず、既存の非ニューラルネットワークベースの推論攻撃を改善することで、メンバーシップ推論のプライバシリスクをベンチマークする。
次に、プライバシリスクスコアと呼ばれる新しい指標を定式化し、導出することで、詳細なプライバシ分析のための新しいアプローチを導入する。
論文 参考訳(メタデータ) (2020-03-24T00:53:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。