On the Geometry of Receiver Operating Characteristic and Precision-Recall Curves
- URL: http://arxiv.org/abs/2504.02169v1
- Date: Wed, 02 Apr 2025 23:04:28 GMT
- Title: On the Geometry of Receiver Operating Characteristic and Precision-Recall Curves
- Authors: Reza Sameni,
- Abstract summary: We study the geometry of Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves in binary classification problems.<n>The key finding is that many of the most commonly used binary classification metrics are merely functions of the composition function $G := F_p circ F_n-1$.
- Score: 1.6790915329706384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the geometry of Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves in binary classification problems. The key finding is that many of the most commonly used binary classification metrics are merely functions of the composition function $G := F_p \circ F_n^{-1}$, where $F_p(\cdot)$ and $F_n(\cdot)$ are the class-conditional cumulative distribution functions of the classifier scores in the positive and negative classes, respectively. This geometric perspective facilitates the selection of operating points, understanding the effect of decision thresholds, and comparison between classifiers. It also helps explain how the shapes and geometry of ROC/PR curves reflect classifier behavior, providing objective tools for building classifiers optimized for specific applications with context-specific constraints. We further explore the conditions for classifier dominance, present analytical and numerical examples demonstrating the effects of class separability and variance on ROC and PR geometries, and derive a link between the positive-to-negative class leakage function $G(\cdot)$ and the Kullback--Leibler divergence. The framework highlights practical considerations, such as model calibration, cost-sensitive optimization, and operating point selection under real-world capacity constraints, enabling more informed approaches to classifier deployment and decision-making.
Related papers
- Benign Overfitting and the Geometry of the Ridge Regression Solution in Binary Classification [75.01389991485098]
We show that ridge regression has qualitatively different behavior depending on the scale of the cluster mean vector.<n>In regimes where the scale is very large, the conditions that allow for benign overfitting turn out to be the same as those for the regression task.
arXiv Detail & Related papers (2025-03-11T01:45:42Z) - Adaptive $k$-nearest neighbor classifier based on the local estimation of the shape operator [49.87315310656657]
We introduce a new adaptive $k$-nearest neighbours ($kK$-NN) algorithm that explores the local curvature at a sample to adaptively defining the neighborhood size.
Results on many real-world datasets indicate that the new $kK$-NN algorithm yields superior balanced accuracy compared to the established $k$-NN method.
arXiv Detail & Related papers (2024-09-08T13:08:45Z) - Generalization bounds for regression and classification on adaptive covering input domains [1.4141453107129398]
We focus on the generalization bound, which serves as an upper limit for the generalization error.
In the case of classification tasks, we treat the target function as a one-hot, a piece-wise constant function, and employ 0/1 loss for error measurement.
arXiv Detail & Related papers (2024-07-29T05:40:08Z) - Value-Distributional Model-Based Reinforcement Learning [59.758009422067]
Quantifying uncertainty about a policy's long-term performance is important to solve sequential decision-making tasks.
We study the problem from a model-based Bayesian reinforcement learning perspective.
We propose Epistemic Quantile-Regression (EQR), a model-based algorithm that learns a value distribution function.
arXiv Detail & Related papers (2023-08-12T14:59:19Z) - Leveraging Angular Information Between Feature and Classifier for
Long-tailed Learning: A Prediction Reformulation Approach [90.77858044524544]
We reformulate the recognition probabilities through included angles without re-balancing the classifier weights.
Inspired by the performance improvement of the predictive form reformulation, we explore the different properties of this angular prediction.
Our method is able to obtain the best performance among peer methods without pretraining on CIFAR10/100-LT and ImageNet-LT.
arXiv Detail & Related papers (2022-12-03T07:52:48Z) - Exploring Category-correlated Feature for Few-shot Image Classification [27.13708881431794]
We present a simple yet effective feature rectification method by exploring the category correlation between novel and base classes as the prior knowledge.
The proposed approach consistently obtains considerable performance gains on three widely used benchmarks.
arXiv Detail & Related papers (2021-12-14T08:25:24Z) - Instance-optimality in optimal value estimation: Adaptivity via
variance-reduced Q-learning [99.34907092347733]
We analyze the problem of estimating optimal $Q$-value functions for a discounted Markov decision process with discrete states and actions.
Using a local minimax framework, we show that this functional arises in lower bounds on the accuracy on any estimation procedure.
In the other direction, we establish the sharpness of our lower bounds, up to factors logarithmic in the state and action spaces, by analyzing a variance-reduced version of $Q$-learning.
arXiv Detail & Related papers (2021-06-28T00:38:54Z) - Stochastic Optimization of Areas Under Precision-Recall Curves with
Provable Convergence [66.83161885378192]
Area under ROC (AUROC) and precision-recall curves (AUPRC) are common metrics for evaluating classification performance for imbalanced problems.
We propose a technical method to optimize AUPRC for deep learning.
arXiv Detail & Related papers (2021-04-18T06:22:21Z) - Linear Classifier Combination via Multiple Potential Functions [0.6091702876917279]
We propose a novel concept of calculating a scoring function based on the distance of the object from the decision boundary and its distance to the class centroid.
An important property is that the proposed score function has the same nature for all linear base classifiers.
arXiv Detail & Related papers (2020-10-02T08:11:51Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - Reduced Dilation-Erosion Perceptron for Binary Classification [1.3706331473063877]
Dilation-erosion perceptron (DEP) is a neural network obtained by a convex combination of a dilation and an erosion.
This paper introduces the reduced dilation-erosion (r-DEP) classifier.
arXiv Detail & Related papers (2020-03-04T19:50:35Z) - Interpretable feature subset selection: A Shapley value based approach [1.511944009967492]
We introduce the notion of classification game, a cooperative game with features as players and hinge loss based characteristic function.
Our major contribution is ($star$) to show that for any dataset the threshold 0 on SVEA value identifies feature subset whose joint interactions for label prediction is significant.
arXiv Detail & Related papers (2020-01-12T16:27:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.