L1-Regularized Functional Support Vector Machine
- URL: http://arxiv.org/abs/2508.05567v1
- Date: Thu, 07 Aug 2025 17:00:29 GMT
- Title: L1-Regularized Functional Support Vector Machine
- Authors: Bingfan Liu, Peijun Sang,
- Abstract summary: We propose an $L_1$-regularized functional support vector machine for binary classification.<n>An accompanying algorithm is developed to fit the classifier.<n> Numerical results from simulations and one real-world application demonstrate that the proposed classifier enjoys good performance in both prediction and feature selection.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In functional data analysis, binary classification with one functional covariate has been extensively studied. We aim to fill in the gap of considering multivariate functional covariates in classification. In particular, we propose an $L_1$-regularized functional support vector machine for binary classification. An accompanying algorithm is developed to fit the classifier. By imposing an $L_1$ penalty, the algorithm enables us to identify relevant functional covariates of the binary response. Numerical results from simulations and one real-world application demonstrate that the proposed classifier enjoys good performance in both prediction and feature selection.
Related papers
- On the Geometry of Receiver Operating Characteristic and Precision-Recall Curves [1.6790915329706384]
We study the geometry of Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves in binary classification problems.<n>The key finding is that many of the most commonly used binary classification metrics are merely functions of the composition function $G := F_p circ F_n-1$.
arXiv Detail & Related papers (2025-04-02T23:04:28Z) - Supervised Manifold Learning for Functional Data [0.0]
We investigate the topic of classification from the perspective of manifold learning.<n>We propose a novel proximity measure that takes the label information into account to learn the low-dimensional representations.
arXiv Detail & Related papers (2025-03-23T05:00:14Z) - Dynamic Logistic Ensembles with Recursive Probability and Automatic Subset Splitting for Enhanced Binary Classification [2.7396014165932923]
This paper presents a novel approach to binary classification using dynamic logistic ensemble models.<n>We develop an algorithm that automatically partitions the dataset into multiple subsets, constructing an ensemble of logistic models to enhance classification accuracy.<n>This work balances computational efficiency with theoretical rigor, providing a robust and interpretable solution for complex classification tasks.
arXiv Detail & Related papers (2024-11-27T00:22:55Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
We show that learning a small neural network to perform canonicalization is better than using predefineds.
Our experiments show that learning the canonicalization function is competitive with existing techniques for learning equivariant functions across many tasks.
arXiv Detail & Related papers (2022-11-11T21:58:15Z) - Provable General Function Class Representation Learning in Multitask
Bandits and MDPs [58.624124220900306]
multitask representation learning is a popular approach in reinforcement learning to boost the sample efficiency.
In this work, we extend the analysis to general function class representations.
We theoretically validate the benefit of multitask representation learning within general function class for bandits and linear MDP.
arXiv Detail & Related papers (2022-05-31T11:36:42Z) - APANet: Adaptive Prototypes Alignment Network for Few-Shot Semantic
Segmentation [56.387647750094466]
Few-shot semantic segmentation aims to segment novel-class objects in a given query image with only a few labeled support images.
Most advanced solutions exploit a metric learning framework that performs segmentation through matching each query feature to a learned class-specific prototype.
We present an adaptive prototype representation by introducing class-specific and class-agnostic prototypes.
arXiv Detail & Related papers (2021-11-24T04:38:37Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
We propose a simple method to derive 2D representation from detection scores produced by an arbitrary set of binary classifiers.
Based upon rank correlations, our method facilitates a visual comparison of classifiers with arbitrary scores.
While the approach is fully versatile and can be applied to any detection task, we demonstrate the method using scores produced by automatic speaker verification and voice anti-spoofing systems.
arXiv Detail & Related papers (2021-06-11T13:03:33Z) - Measure Inducing Classification and Regression Trees for Functional Data [0.0]
We propose a tree-based algorithm for classification and regression problems in the context of functional data analysis.
This is achieved by learning a weighted functional $L2$ space by means of constrained convex optimization.
arXiv Detail & Related papers (2020-10-30T18:49:53Z) - Linear Classifier Combination via Multiple Potential Functions [0.6091702876917279]
We propose a novel concept of calculating a scoring function based on the distance of the object from the decision boundary and its distance to the class centroid.
An important property is that the proposed score function has the same nature for all linear base classifiers.
arXiv Detail & Related papers (2020-10-02T08:11:51Z) - Invariant Feature Coding using Tensor Product Representation [75.62232699377877]
We prove that the group-invariant feature vector contains sufficient discriminative information when learning a linear classifier.
A novel feature model that explicitly consider group action is proposed for principal component analysis and k-means clustering.
arXiv Detail & Related papers (2019-06-05T07:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.