Image Coding for Machines via Feature-Preserving Rate-Distortion Optimization
- URL: http://arxiv.org/abs/2504.02216v1
- Date: Thu, 03 Apr 2025 02:11:26 GMT
- Title: Image Coding for Machines via Feature-Preserving Rate-Distortion Optimization
- Authors: Samuel Fernández-Menduiña, Eduardo Pavez, Antonio Ortega,
- Abstract summary: We show an approach to reduce the effect of compression on a task loss using the distance between features as a distortion metric.<n>We simplify the RDO formulation to make the distortion term computable using block-based encoders.<n>We show up to 10% bit-rate savings for the same computer vision accuracy compared to RDO based on SSE.
- Score: 27.97760974010369
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many images and videos are primarily processed by computer vision algorithms, involving only occasional human inspection. When this content requires compression before processing, e.g., in distributed applications, coding methods must optimize for both visual quality and downstream task performance. We first show that, given the features obtained from the original and the decoded images, an approach to reduce the effect of compression on a task loss is to perform rate-distortion optimization (RDO) using the distance between features as a distortion metric. However, optimizing directly such a rate-distortion trade-off requires an iterative workflow of encoding, decoding, and feature evaluation for each coding parameter, which is computationally impractical. We address this problem by simplifying the RDO formulation to make the distortion term computable using block-based encoders. We first apply Taylor's expansion to the feature extractor, recasting the feature distance as a quadratic metric with the Jacobian matrix of the neural network. Then, we replace the linearized metric with a block-wise approximation, which we call input-dependent squared error (IDSE). To reduce computational complexity, we approximate IDSE using Jacobian sketches. The resulting loss can be evaluated block-wise in the transform domain and combined with the sum of squared errors (SSE) to address both visual quality and computer vision performance. Simulations with AVC across multiple feature extractors and downstream neural networks show up to 10% bit-rate savings for the same computer vision accuracy compared to RDO based on SSE, with no decoder complexity overhead and just a 7% encoder complexity increase.
Related papers
- RL-RC-DoT: A Block-level RL agent for Task-Aware Video Compression [68.31184784672227]
In modern applications such as autonomous driving, an overwhelming majority of videos serve as input for AI systems performing tasks.<n>It is therefore useful to optimize the encoder for a downstream task instead of for image quality.<n>Here, we address this challenge by controlling the Quantization Parameters (QPs) at the macro-block level to optimize the downstream task.
arXiv Detail & Related papers (2025-01-21T15:36:08Z) - SparseTem: Boosting the Efficiency of CNN-Based Video Encoders by Exploiting Temporal Continuity [15.872209884833977]
We propose a memory-efficient scheduling method to eliminate memory overhead and an online adjustment mechanism to minimize accuracy degradation.
SparseTem achieves speedup of 1.79x for EfficientDet and 4.72x for CRNN, with minimal accuracy drop and no additional memory overhead.
arXiv Detail & Related papers (2024-10-28T07:13:25Z) - Accelerating Error Correction Code Transformers [56.75773430667148]
We introduce a novel acceleration method for transformer-based decoders.
We achieve a 90% compression ratio and reduce arithmetic operation energy consumption by at least 224 times on modern hardware.
arXiv Detail & Related papers (2024-10-08T11:07:55Z) - Compression of Structured Data with Autoencoders: Provable Benefit of
Nonlinearities and Depth [83.15263499262824]
We prove that gradient descent converges to a solution that completely disregards the sparse structure of the input.
We show how to improve upon Gaussian performance for the compression of sparse data by adding a denoising function to a shallow architecture.
We validate our findings on image datasets, such as CIFAR-10 and MNIST.
arXiv Detail & Related papers (2024-02-07T16:32:29Z) - ConvNeXt-ChARM: ConvNeXt-based Transform for Efficient Neural Image
Compression [18.05997169440533]
We propose ConvNeXt-ChARM, an efficient ConvNeXt-based transform coding framework, paired with a compute-efficient channel-wise auto-regressive auto-regressive.
We show that ConvNeXt-ChARM brings consistent and significant BD-rate (PSNR) reductions estimated on average to 5.24% and 1.22% over the versatile video coding (VVC) reference encoder (VTM-18.0) and the state-of-the-art learned image compression method SwinT-ChARM.
arXiv Detail & Related papers (2023-07-12T11:45:54Z) - FIANCEE: Faster Inference of Adversarial Networks via Conditional Early
Exits [0.7649605697963953]
We propose a method for diminishing computations by adding so-called early exit branches to the original architecture.
We apply our method on two different SOTA models performing generative tasks.
This is especially relevant for real-time applications such as synthesis of faces, when quality loss needs to be contained.
arXiv Detail & Related papers (2023-04-20T13:40:49Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly.
A simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work.
It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs.
arXiv Detail & Related papers (2022-09-26T22:22:30Z) - Asymmetric Learned Image Compression with Multi-Scale Residual Block,
Importance Map, and Post-Quantization Filtering [15.056672221375104]
Deep learning-based image compression has achieved better ratedistortion (R-D) performance than the latest traditional method, H.266/VVC.
Many leading learned schemes cannot maintain a good trade-off between performance and complexity.
We propose an effcient and effective image coding framework, which achieves similar R-D performance with lower complexity than the state of the art.
arXiv Detail & Related papers (2022-06-21T09:34:29Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
We build a neural data-dependent transform and introduce a continuous online mode decision mechanism to jointly optimize the coding efficiency for each individual image.
The experimental results show the effectiveness of the proposed neural-syntax design and the continuous online mode decision mechanism.
arXiv Detail & Related papers (2022-03-09T14:56:48Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
Autoencoders are a type of unsupervised neural networks, which can be used to solve various tasks.
We propose a scheme to explicitly penalize feature redundancies in the bottleneck representation.
We tested our approach across different tasks: dimensionality reduction using three different dataset, image compression using the MNIST dataset, and image denoising using fashion MNIST.
arXiv Detail & Related papers (2022-02-09T18:48:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.