Quantum singular value transformation without block encodings: Near-optimal complexity with minimal ancilla
- URL: http://arxiv.org/abs/2504.02385v1
- Date: Thu, 03 Apr 2025 08:24:15 GMT
- Title: Quantum singular value transformation without block encodings: Near-optimal complexity with minimal ancilla
- Authors: Shantanav Chakraborty, Soumyabrata Hazra, Tongyang Li, Changpeng Shao, Xinzhao Wang, Yuxin Zhang,
- Abstract summary: We develop new algorithms for Quantum Singular Value Transformation (QSVT)<n>Our results provide a new framework for quantum algorithms, reducing hardware overhead while maintaining near-optimal performance.<n>As applications, we develop end-to-end quantum algorithms for quantum linear systems and ground state property estimation.
- Score: 10.23939777076027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop new algorithms for Quantum Singular Value Transformation (QSVT), a unifying framework underlying a wide range of quantum algorithms. Existing implementations of QSVT rely on block encoding, incurring $O(\log L)$ ancilla overhead and circuit depth $\widetilde{O}(d\lambda L)$ for polynomial transformations of a Hamiltonian $H=\sum_{k=1}^L \lambda_k H_k$, where $d$ is polynomial degree, and $\lambda=\sum_k |\lambda_k|$. We introduce a new approach that eliminates block encoding, needs only a single ancilla qubit, and maintains near-optimal complexity, using only basic Hamiltonian simulation methods such as Trotterization. Our method achieves a circuit depth of $\widetilde{O}(L(d\lambda_{\mathrm{comm}})^{1+o(1)})$, without any multi-qubit controlled gates. Here, $\lambda_{\mathrm{comm}}$ depends on the nested commutators of the $H_k$'s and can be much smaller than $\lambda$. Central to our technique is a novel use of Richardson extrapolation, enabling systematic error cancellation in interleaved sequences of arbitrary unitaries and Hamiltonian evolution operators, establishing a broadly applicable framework beyond QSVT. Additionally, we propose two randomized QSVT algorithms for cases with only sampling access to Hamiltonian terms. The first uses qDRIFT, while the second replaces block encodings in QSVT with randomly sampled unitaries. Both achieve quadratic complexity in $d$, which we establish as a lower bound for any randomized method implementing polynomial transformations in this model. Finally, as applications, we develop end-to-end quantum algorithms for quantum linear systems and ground state property estimation, achieving near-optimal complexity without oracular access. Our results provide a new framework for quantum algorithms, reducing hardware overhead while maintaining near-optimal performance, with implications for both near-term and fault-tolerant quantum computing.
Related papers
- Space-Efficient Quantum Error Reduction without log Factors [50.10645865330582]
We present a new highly simplified construction of a purifier, that can be understood as a weighted walk on a line similar to a random walk interpretation of majority voting.
Our purifier has exponentially better space complexity than the previous one, and quadratically better dependence on the soundness-completeness gap of the algorithm being purified.
arXiv Detail & Related papers (2025-02-13T12:04:39Z) - Quantum linear system algorithm with optimal queries to initial state preparation [0.0]
Quantum algorithms for linear systems produce the solution state $A-1|brangle$ by querying two oracles.
We present a quantum linear system algorithm making $mathbfThetaleft (1/sqrtpright)$ queries to $O_b$, which is optimal in the success probability.
In various applications such as solving differential equations, we can further improve the dependence on $p$ using a block preconditioning scheme.
arXiv Detail & Related papers (2024-10-23T18:00:01Z) - A shortcut to an optimal quantum linear system solver [55.2480439325792]
We give a conceptually simple quantum linear system solvers (QLSS) that does not use complex or difficult-to-analyze techniques.
If the solution norm $lVertboldsymbolxrVert$ is known exactly, our QLSS requires only a single application of kernel.
Alternatively, by reintroducing a concept from the adiabatic path-following technique, we show that $O(kappa)$ complexity can be achieved for norm estimation.
arXiv Detail & Related papers (2024-06-17T20:54:11Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Hamiltonian simulation for low-energy states with optimal time dependence [45.02537589779136]
We consider the task of simulating time evolution under a Hamiltonian $H$ within its low-energy subspace.
We present a quantum algorithm that uses $O(tsqrtlambdaGamma + sqrtlambda/Gammalog (1/epsilon))$ queries to the block-encoding for any $Gamma$.
arXiv Detail & Related papers (2024-04-04T17:58:01Z) - Generalized Quantum Signal Processing [0.6768558752130311]
We present a Generalized Quantum Signal Processing approach, employing general SU(2) rotations as our signal processing operators.
Our approach lifts all practical restrictions on the family of achievable transformations, with the sole remaining condition being that $|P|leq 1$.
In cases where only $P$ is known, we provide an efficient GPU optimization capable of identifying in under a minute of time, a corresponding $Q$ for degree on the order of $107$.
arXiv Detail & Related papers (2023-08-03T01:51:52Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
We show that any efficient SQ algorithm for the problem requires sample complexity at least $Omega(d1/2/(maxp, epsilon)2)$.
Our lower bound suggests that this quadratic dependence on $1/epsilon$ is inherent for efficient algorithms.
arXiv Detail & Related papers (2023-07-13T18:59:28Z) - Quantum Simulation of the First-Quantized Pauli-Fierz Hamiltonian [0.5097809301149342]
We show that a na"ive partitioning and low-order splitting formula can yield, through our divide and conquer formalism, superior scaling to qubitization for large $Lambda$.
We also give new algorithmic and circuit level techniques for gate optimization including a new way of implementing a group of multi-controlled-X gates.
arXiv Detail & Related papers (2023-06-19T23:20:30Z) - Replicability in Reinforcement Learning [46.89386344741442]
We focus on the fundamental setting of discounted MDPs with access to a generative model.
Inspired by Impagliazzo et al. [2022], we say that an RL algorithm is replicable if, with high probability, it outputs the exact same policy after two executions.
arXiv Detail & Related papers (2023-05-31T05:16:23Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - Robust Sparse Mean Estimation via Sum of Squares [42.526664955704746]
We study the problem of high-dimensional sparse mean estimation in the presence of an $epsilon$-fraction of adversarial outliers.
Our algorithms follow the Sum-of-Squares based, to algorithms approach.
arXiv Detail & Related papers (2022-06-07T16:49:54Z) - How to simulate quantum measurement without computing marginals [3.222802562733787]
We describe and analyze algorithms for classically computation measurement of an $n$-qubit quantum state $psi$ in the standard basis.
Our algorithms reduce the sampling task to computing poly(n)$ amplitudes of $n$-qubit states.
arXiv Detail & Related papers (2021-12-15T21:44:05Z) - Enhancing the Quantum Linear Systems Algorithm using Richardson
Extrapolation [0.8057006406834467]
We present a quantum algorithm to solve systems of linear equations of the form $Amathbfx=mathbfb$.
The algorithm achieves an exponential improvement with respect to $N$ over classical methods.
arXiv Detail & Related papers (2020-09-09T18:00:09Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.