論文の概要: How Artificial Intelligence Leads to Knowledge Why: An Inquiry Inspired by Aristotle's Posterior Analytics
- arxiv url: http://arxiv.org/abs/2504.02430v1
- Date: Thu, 03 Apr 2025 09:37:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:55:34.728936
- Title: How Artificial Intelligence Leads to Knowledge Why: An Inquiry Inspired by Aristotle's Posterior Analytics
- Title(参考訳): 人工知能がなぜ知識に導くか:アリストテレスの後部分析にインスパイアされた質問
- Authors: Guus Eelink, Kilian Rückschloß, Felix Weitkämper,
- Abstract要約: この研究は、人工知能の中でアリストテレスの知識と知識の区別を明らかにするために、因果系の理論的枠組みを導入する。
外部介入の効果を予測することは、なぜかという知識だけで実現可能であり、そのようなタスクに必要な知識をより正確に理解することができると論じている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Bayesian networks and causal models provide frameworks for handling queries about external interventions and counterfactuals, enabling tasks that go beyond what probability distributions alone can address. While these formalisms are often informally described as capturing causal knowledge, there is a lack of a formal theory characterizing the type of knowledge required to predict the effects of external interventions. This work introduces the theoretical framework of causal systems to clarify Aristotle's distinction between knowledge that and knowledge why within artificial intelligence. By interpreting existing artificial intelligence technologies as causal systems, it investigates the corresponding types of knowledge. Furthermore, it argues that predicting the effects of external interventions is feasible only with knowledge why, providing a more precise understanding of the knowledge necessary for such tasks.
- Abstract(参考訳): ベイジアンネットワークと因果モデルは、外部の介入や対策に関するクエリを処理するためのフレームワークを提供する。
これらの形式主義は、しばしば非公式に因果的知識を捉えるものとして記述されるが、外部介入の効果を予測するのに必要な知識の種類を特徴づける形式理論が欠如している。
この研究は、人工知能の中でアリストテレスの知識と知識の区別を明らかにするために、因果系の理論的枠組みを導入する。
既存の人工知能技術を因果系として解釈することにより、対応する種類の知識を調査する。
さらに、外部介入の効果を予測することは、なぜかという知識によってのみ可能であり、そのようなタスクに必要な知識をより正確に理解することができると論じている。
関連論文リスト
- Crystal: Introspective Reasoners Reinforced with Self-Feedback [118.53428015478957]
本稿では,イントロスペクティブ・コモンセンス推論器であるCrystalを開発するための新しい手法を提案する。
コモンセンス問題に対処するため、まず与えられた質問に関連する知識ステートメントのイントロスペクションを行い、その後、それまでのイントロスペクションされた知識に根ざした情報予測を行う。
実験により、クリスタルは標準的な微調整法と連鎖蒸留法の両方で著しく優れており、コモンセンス推論プロセスの透明性を高めていることが示された。
論文 参考訳(メタデータ) (2023-10-07T21:23:58Z) - Learning by Applying: A General Framework for Mathematical Reasoning via
Enhancing Explicit Knowledge Learning [47.96987739801807]
本稿では,既存のモデル(バックボーン)を明示的な知識学習によって原則的に拡張する枠組みを提案する。
LeApでは,新しい問題知識表現パラダイムで知識学習を行う。
LeApはすべてのバックボーンのパフォーマンスを改善し、正確な知識を習得し、より解釈可能な推論プロセスを実現する。
論文 参考訳(メタデータ) (2023-02-11T15:15:41Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Projection: A Mechanism for Human-like Reasoning in Artificial
Intelligence [6.218613353519724]
モデルから)トップダウン情報を利用する推論手法は、困難な状況における実体認識に有効であることが示されている。
投射は、様々な状況や困難な状況に知識を適用するという問題を解決するための鍵となるメカニズムである。
論文 参考訳(メタデータ) (2021-03-24T22:33:51Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - Foundations of Explainable Knowledge-Enabled Systems [3.7250420821969827]
本稿では,説明可能な人工知能システムの歴史的概要を紹介する。
我々は、エキスパートシステム、認知アシスタント、セマンティックアプリケーション、機械学習ドメインにまたがる知識対応システムに焦点を当てる。
説明可能な知識対応システムと説明可能な知識対応システムについて,新たな定義を提案する。
論文 参考訳(メタデータ) (2020-03-17T04:18:48Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。