CHARMS: A Cognitive Hierarchical Agent for Reasoning and Motion Stylization in Autonomous Driving
- URL: http://arxiv.org/abs/2504.02450v3
- Date: Mon, 28 Apr 2025 15:26:59 GMT
- Title: CHARMS: A Cognitive Hierarchical Agent for Reasoning and Motion Stylization in Autonomous Driving
- Authors: Jingyi Wang, Duanfeng Chu, Zejian Deng, Liping Lu, Jinxiang Wang, Chen Sun,
- Abstract summary: This paper proposes a Cognitive Hierarchical Agent for Reasoning and Motion Stylization (CHARMS)<n>CHARMS captures human-like reasoning patterns through a two-stage training pipeline comprising reinforcement learning pretraining and supervised fine-tuning.<n>It is capable of both making intelligent driving decisions as an ego vehicle and generating diverse, realistic driving scenarios as environment vehicles.
- Score: 7.672737334176452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To address the challenge of insufficient interactivity and behavioral diversity in autonomous driving decision-making, this paper proposes a Cognitive Hierarchical Agent for Reasoning and Motion Stylization (CHARMS). By leveraging Level-k game theory, CHARMS captures human-like reasoning patterns through a two-stage training pipeline comprising reinforcement learning pretraining and supervised fine-tuning. This enables the resulting models to exhibit diverse and human-like behaviors, enhancing their decision-making capacity and interaction fidelity in complex traffic environments. Building upon this capability, we further develop a scenario generation framework that utilizes the Poisson cognitive hierarchy theory to control the distribution of vehicles with different driving styles through Poisson and binomial sampling. Experimental results demonstrate that CHARMS is capable of both making intelligent driving decisions as an ego vehicle and generating diverse, realistic driving scenarios as environment vehicles. The code for CHARMS is released at https://github.com/chuduanfeng/CHARMS.
Related papers
- AI-Driven Day-to-Day Route Choice [15.934133434324755]
"LLMTraveler" is an agent that learns from past experiences and makes decisions by balancing retrieved data and personality traits.
This paper systematically evaluates the LLMTraveler's ability to replicate human-like decision-making through two stages of day-to-day congestion games.
This capability offers valuable insights for transportation policymaking, such as simulating traveler responses to new policies or changes in the network.
arXiv Detail & Related papers (2024-12-04T14:13:38Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
We look at the application of Multimodal Large Language Models (MLLMs) in autonomous driving.
Despite advances in models like GPT-4o, their performance in complex driving environments remains largely unexplored.
arXiv Detail & Related papers (2024-05-09T17:52:42Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Decision Making for Autonomous Driving in Interactive Merge Scenarios
via Learning-based Prediction [39.48631437946568]
This paper focuses on the complex task of merging into moving traffic where uncertainty emanates from the behavior of other drivers.
We frame the problem as a partially observable Markov decision process (POMDP) and solve it online with Monte Carlo tree search.
The solution to the POMDP is a policy that performs high-level driving maneuvers, such as giving way to an approaching car, keeping a safe distance from the vehicle in front or merging into traffic.
arXiv Detail & Related papers (2023-03-29T16:12:45Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
We propose Iso-Dream++, a model-based reinforcement learning approach.
We perform policy optimization based on the decoupled latent imaginations.
This enables long-horizon visuomotor control tasks to benefit from isolating mixed dynamics sources in the wild.
arXiv Detail & Related papers (2023-03-27T02:55:56Z) - Isolating and Leveraging Controllable and Noncontrollable Visual
Dynamics in World Models [65.97707691164558]
We present Iso-Dream, which improves the Dream-to-Control framework in two aspects.
First, by optimizing inverse dynamics, we encourage world model to learn controllable and noncontrollable sources.
Second, we optimize the behavior of the agent on the decoupled latent imaginations of the world model.
arXiv Detail & Related papers (2022-05-27T08:07:39Z) - Transferable and Adaptable Driving Behavior Prediction [34.606012573285554]
We propose HATN, a hierarchical framework to generate high-quality, transferable, and adaptable predictions for driving behaviors.
We demonstrate our algorithms in the task of trajectory prediction for real traffic data at intersections and roundabouts from the INTERACTION dataset.
arXiv Detail & Related papers (2022-02-10T16:46:24Z) - Causal Imitative Model for Autonomous Driving [85.78593682732836]
We propose Causal Imitative Model (CIM) to address inertia and collision problems.
CIM explicitly discovers the causal model and utilizes it to train the policy.
Our experiments show that our method outperforms previous work in terms of inertia and collision rates.
arXiv Detail & Related papers (2021-12-07T18:59:15Z) - Inverse Reinforcement Learning Based Stochastic Driver Behavior Learning [3.4979173592795374]
Drivers have unique and rich driving behaviors when operating vehicles in traffic.
This paper presents a novel driver behavior learning approach that captures the uniqueness and richness of human driver behavior in realistic driving scenarios.
arXiv Detail & Related papers (2021-07-01T20:18:03Z) - Contingencies from Observations: Tractable Contingency Planning with
Learned Behavior Models [82.34305824719101]
Humans have a remarkable ability to make decisions by accurately reasoning about future events.
We develop a general-purpose contingency planner that is learned end-to-end using high-dimensional scene observations.
We show how this model can tractably learn contingencies from behavioral observations.
arXiv Detail & Related papers (2021-04-21T14:30:20Z) - Building Safer Autonomous Agents by Leveraging Risky Driving Behavior
Knowledge [1.52292571922932]
This study focuses on creating risk prone scenarios with heavy traffic and unexpected random behavior for creating better model-free learning agents.
We generate multiple autonomous driving scenarios by creating new custom Markov Decision Process (MDP) environment iterations in highway-env simulation package.
We train model free learning agents with supplement information of risk prone driving scenarios and compare their performance with baseline agents.
arXiv Detail & Related papers (2021-03-16T23:39:33Z) - Modeling Human Driving Behavior through Generative Adversarial Imitation
Learning [7.387855463533219]
This article describes the use of Generative Adversarial Imitation Learning (GAIL) for learning-based driver modeling.
Because driver modeling is inherently a multi-agent problem, this paper describes a parameter-sharing extension of GAIL called PS-GAIL to tackle multi-agent driver modeling.
This paper describes Reward Augmented Imitation Learning (RAIL), which modifies the reward signal to provide domain-specific knowledge to the agent.
arXiv Detail & Related papers (2020-06-10T05:47:39Z) - A Probabilistic Framework for Imitating Human Race Driver Behavior [31.524303667746643]
We propose Probabilistic Modeling of Driver behavior (ProMoD), a modular framework which splits the task of driver behavior modeling into multiple modules.
A global target trajectory distribution is learned with Probabilistic Movement Primitives, clothoids are utilized for local path generation, and the corresponding choice of actions is performed by a neural network.
Experiments in a simulated car racing setting show considerable advantages in imitation accuracy and robustness compared to other imitation learning algorithms.
arXiv Detail & Related papers (2020-01-22T20:06:38Z) - Intelligent Roundabout Insertion using Deep Reinforcement Learning [68.8204255655161]
We present a maneuver planning module able to negotiate the entering in busy roundabouts.
The proposed module is based on a neural network trained to predict when and how entering the roundabout throughout the whole duration of the maneuver.
arXiv Detail & Related papers (2020-01-03T11:16:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.