論文の概要: Adaptive Frequency Enhancement Network for Remote Sensing Image Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2504.02647v1
- Date: Thu, 03 Apr 2025 14:42:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:55:11.470454
- Title: Adaptive Frequency Enhancement Network for Remote Sensing Image Semantic Segmentation
- Title(参考訳): リモートセンシング画像セマンティックセグメンテーションのための適応周波数拡張ネットワーク
- Authors: Feng Gao, Miao Fu, Jingchao Cao, Junyu Dong, Qian Du,
- Abstract要約: 本稿では、適応周波数と空間特徴の相互作用モジュール(AFSIM)と選択特徴の融合モジュール(SFM)の2つの重要なコンポーネントを統合した適応周波数拡張ネットワーク(AFENet)を提案する。
AFSIMは入力画像の内容に応じて、高周波数特徴と低周波特徴を動的に分離・変調する。
SFMは、ネットワークの表現能力を高めるために、グローバルコンテキストとローカル詳細機能を選択的に融合する。
- 参考スコア(独自算出の注目度): 33.49405456617909
- License:
- Abstract: Semantic segmentation of high-resolution remote sensing images plays a crucial role in land-use monitoring and urban planning. Recent remarkable progress in deep learning-based methods makes it possible to generate satisfactory segmentation results. However, existing methods still face challenges in adapting network parameters to various land cover distributions and enhancing the interaction between spatial and frequency domain features. To address these challenges, we propose the Adaptive Frequency Enhancement Network (AFENet), which integrates two key components: the Adaptive Frequency and Spatial feature Interaction Module (AFSIM) and the Selective feature Fusion Module (SFM). AFSIM dynamically separates and modulates high- and low-frequency features according to the content of the input image. It adaptively generates two masks to separate high- and low-frequency components, therefore providing optimal details and contextual supplementary information for ground object feature representation. SFM selectively fuses global context and local detailed features to enhance the network's representation capability. Hence, the interactions between frequency and spatial features are further enhanced. Extensive experiments on three publicly available datasets demonstrate that the proposed AFENet outperforms state-of-the-art methods. In addition, we also validate the effectiveness of AFSIM and SFM in managing diverse land cover types and complex scenarios. Our codes are available at https://github.com/oucailab/AFENet.
- Abstract(参考訳): 高解像度リモートセンシング画像のセマンティックセグメンテーションは、土地利用監視と都市計画において重要な役割を担っている。
近年,ディープラーニングに基づく手法の顕著な進歩により,良好なセグメンテーション結果が得られるようになった。
しかし、既存の手法は、様々な土地被覆分布にネットワークパラメータを適用することや、空間領域と周波数領域の特徴の相互作用を強化することの課題に直面している。
これらの課題に対処するため,適応周波数・空間特徴相互作用モジュール (AFSIM) と選択特徴融合モジュール (SFM) の2つの主要なコンポーネントを統合した適応周波数拡張ネットワーク (AFENet) を提案する。
AFSIMは入力画像の内容に応じて、高周波数特徴と低周波特徴を動的に分離・変調する。
適応的に2つのマスクを生成し、高周波数成分と低周波成分を分離する。
SFMは、ネットワークの表現能力を高めるために、グローバルコンテキストとローカル詳細機能を選択的に融合する。
これにより、周波数と空間的特徴の相互作用がさらに強化される。
3つの公開データセットに対する大規模な実験は、提案されたAFENetが最先端の手法より優れていることを示している。
さらに, 多様な土地被覆タイプや複雑なシナリオを管理する上で, AFSIM と SFM の有効性についても検証した。
私たちのコードはhttps://github.com/oucailab/AFENet.comで公開されています。
関連論文リスト
- FE-UNet: Frequency Domain Enhanced U-Net with Segment Anything Capability for Versatile Image Segmentation [50.9040167152168]
CNNのコントラスト感度関数を実験的に定量化し,人間の視覚システムと比較した。
本稿ではウェーブレット誘導分光ポーリングモジュール(WSPM)を提案する。
人間の視覚系をさらにエミュレートするために、周波数領域拡張受容野ブロック(FE-RFB)を導入する。
本研究では,SAM2 をバックボーンとし,Hiera-Large を事前学習ブロックとして組み込んだ FE-UNet を開発した。
論文 参考訳(メタデータ) (2025-02-06T07:24:34Z) - Frequency-Spatial Entanglement Learning for Camouflaged Object Detection [34.426297468968485]
既存の手法では、複雑な設計で空間的特徴の識別能力を最大化することにより、画素類似性の影響を減らそうとしている。
本稿では,周波数領域と空間領域の表現を共同で探索し,周波数空間の絡み合い学習(FSEL)手法を提案する。
我々の実験は、広く使われている3つのデータセットにおける包括的量的および質的比較を通じて、21以上の最先端手法によるFSELの優位性を実証した。
論文 参考訳(メタデータ) (2024-09-03T07:58:47Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
点とボクセルの表現の統合は、LiDARベースの3Dオブジェクト検出においてより一般的になりつつある。
PVAFN(Point-Voxel Attention Fusion Network)と呼ばれる新しい2段3次元物体検出器を提案する。
PVAFNはマルチプール戦略を使用して、マルチスケールとリージョン固有の情報を効果的に統合する。
論文 参考訳(メタデータ) (2024-08-26T19:43:01Z) - Mixture-of-Noises Enhanced Forgery-Aware Predictor for Multi-Face Manipulation Detection and Localization [52.87635234206178]
本稿では,多面的操作検出と局所化に適したMoNFAPという新しいフレームワークを提案する。
このフレームワークには2つの新しいモジュールが含まれている: Forgery-aware Unified Predictor (FUP) Module と Mixture-of-Noises Module (MNM)。
論文 参考訳(メタデータ) (2024-08-05T08:35:59Z) - FANet: Feature Amplification Network for Semantic Segmentation in Cluttered Background [9.970265640589966]
既存のディープラーニングアプローチでは、複雑なシナリオに存在するセマンティックセグメンテーションにおいて重要なセマンティックな方法が残されている。
マルチステージ機能拡張モジュールを用いて意味情報を組み込んだバックボーンネットワークとして機能増幅ネットワーク(FANet)を提案する。
実験の結果,既存の手法と比較して最先端の性能が示された。
論文 参考訳(メタデータ) (2024-07-12T15:57:52Z) - SFFNet: A Wavelet-Based Spatial and Frequency Domain Fusion Network for Remote Sensing Segmentation [9.22384870426709]
本稿ではSFFNet(Spatial and Frequency Domain Fusion Network)フレームワークを提案する。
第1段階は空間的手法を用いて特徴を抽出し、十分な空間的詳細と意味情報を持つ特徴を得る。
第2段階は、これらの特徴を空間領域と周波数領域の両方にマッピングする。
SFFNetはmIoUの点で優れた性能を示し、それぞれ84.80%と87.73%に達した。
論文 参考訳(メタデータ) (2024-05-03T10:47:56Z) - Unified Frequency-Assisted Transformer Framework for Detecting and
Grounding Multi-Modal Manipulation [109.1912721224697]
本稿では、DGM4問題に対処するため、UFAFormerという名前のUnified Frequency-Assisted TransFormerフレームワークを提案する。
離散ウェーブレット変換を利用して、画像を複数の周波数サブバンドに分解し、リッチな顔偽造品をキャプチャする。
提案する周波数エンコーダは、帯域内およびバンド間自己アテンションを組み込んだもので、多種多様なサブバンド内および多種多様なフォージェリー特徴を明示的に集約する。
論文 参考訳(メタデータ) (2023-09-18T11:06:42Z) - Mutual Information-driven Triple Interaction Network for Efficient Image
Dehazing [54.168567276280505]
画像デハージングのための相互情報駆動型トリプルインタラクションネットワーク(MITNet)を提案する。
振幅誘導ヘイズ除去と呼ばれる第1段階は、ヘイズ除去のためのヘイズ画像の振幅スペクトルを復元することを目的としている。
第2段階は位相誘導構造が洗練され、位相スペクトルの変換と微細化を学ぶことに尽力した。
論文 参考訳(メタデータ) (2023-08-14T08:23:58Z) - CSRNet: Cascaded Selective Resolution Network for Real-time Semantic
Segmentation [18.63596070055678]
本稿では,リアルタイムセグメンテーションの性能向上を図るために,光カスケード選択分解ネットワーク(CSRNet)を提案する。
提案するネットワークは,低解像度から高解像度までの特徴情報を統合した3段階セグメンテーションシステムを構築している。
2つのよく知られたデータセットの実験により、提案したCSRNetはリアルタイムセグメンテーションの性能を効果的に向上することを示した。
論文 参考訳(メタデータ) (2021-06-08T14:22:09Z) - RGB-D Salient Object Detection with Cross-Modality Modulation and
Selection [126.4462739820643]
本稿では, RGB-D Salient Object Detection (SOD) において, モジュール間相補性を段階的に統合し, 改良する有効な方法を提案する。
提案するネットワークは,1)RGB画像とそれに対応する深度マップからの補完情報を効果的に統合する方法,および2)より精度の高い特徴を適応的に選択する方法の2つの課題を主に解決する。
論文 参考訳(メタデータ) (2020-07-14T14:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。