論文の概要: STOOD-X methodology: using statistical nonparametric test for OOD Detection Large-Scale datasets enhanced with explainability
- arxiv url: http://arxiv.org/abs/2504.02685v1
- Date: Thu, 03 Apr 2025 15:26:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:58:33.707118
- Title: STOOD-X methodology: using statistical nonparametric test for OOD Detection Large-Scale datasets enhanced with explainability
- Title(参考訳): STOOD-X法によるOOD検出のための統計的非パラメトリックテスト
- Authors: Iván Sevillano-García, Julián Luengo, Francisco Herrera,
- Abstract要約: アウト・オブ・ディストリビューション(OOD)検出は、特にモデル障害が深刻な結果をもたらすような、安全性に敏感なアプリケーションにおいて、マシンラーニングにおいて重要なタスクである。
STOOD-Xは,OOD検出のための統計的非パラメトリックテストとeXplainabilityの強化を組み合わせた2段階の手法である。
最初の段階では、STOOD-Xは特徴空間距離とWilcoxon-Mann-Whitneyテストを使用して、特定の特徴分布を仮定せずにOODサンプルを同定する。
第2段階では、BLUEと整合して、各決定を駆動する特徴を明らかにする、ユーザフレンドリーなコンセプトベースの視覚的説明を生成する。
- 参考スコア(独自算出の注目度): 9.658282892513386
- License:
- Abstract: Out-of-Distribution (OOD) detection is a critical task in machine learning, particularly in safety-sensitive applications where model failures can have serious consequences. However, current OOD detection methods often suffer from restrictive distributional assumptions, limited scalability, and a lack of interpretability. To address these challenges, we propose STOOD-X, a two-stage methodology that combines a Statistical nonparametric Test for OOD Detection with eXplainability enhancements. In the first stage, STOOD-X uses feature-space distances and a Wilcoxon-Mann-Whitney test to identify OOD samples without assuming a specific feature distribution. In the second stage, it generates user-friendly, concept-based visual explanations that reveal the features driving each decision, aligning with the BLUE XAI paradigm. Through extensive experiments on benchmark datasets and multiple architectures, STOOD-X achieves competitive performance against state-of-the-art post hoc OOD detectors, particularly in high-dimensional and complex settings. In addition, its explainability framework enables human oversight, bias detection, and model debugging, fostering trust and collaboration between humans and AI systems. The STOOD-X methodology therefore offers a robust, explainable, and scalable solution for real-world OOD detection tasks.
- Abstract(参考訳): アウト・オブ・ディストリビューション(OOD)検出は、特にモデル障害が深刻な結果をもたらすような、安全性に敏感なアプリケーションにおいて、マシンラーニングにおいて重要なタスクである。
しかし、現在のOOD検出法は、しばしば限定的な分布仮定、限られたスケーラビリティ、解釈可能性の欠如に悩まされる。
これらの課題に対処するために,統計的非パラメトリックなOOD検出テストとeXplainabilityの強化を組み合わせた2段階の手法であるSTOOD-Xを提案する。
最初の段階では、STOOD-Xは特徴空間距離とWilcoxon-Mann-Whitneyテストを使用して、特定の特徴分布を仮定せずにOODサンプルを同定する。
第2段階では、BLUE XAIパラダイムに沿って、各決定を駆動する特徴を明らかにする、ユーザフレンドリなコンセプトベースの視覚的説明を生成する。
ベンチマークデータセットと複数のアーキテクチャに関する広範な実験を通じて、STOOD-Xは最先端のポストホックOOD検出器、特に高次元および複雑な環境での競合性能を達成する。
さらに、その説明可能性フレームワークは、人間の監視、バイアス検出、モデルデバッグを可能にし、人間とAIシステム間の信頼とコラボレーションを促進する。
したがって、STOOD-X方法論は現実世界のOOD検出タスクに対して堅牢で説明可能なスケーラブルなソリューションを提供する。
関連論文リスト
- Out-of-Distribution Detection using Synthetic Data Generation [21.612592503592143]
In- and out-of-distriion (OOD) 入力は、分類システムの信頼性の高いデプロイに不可欠である。
本稿では,Large Language Models (LLMs) の生成能力を利用して,高品質なOODプロキシを生成する手法を提案する。
論文 参考訳(メタデータ) (2025-02-05T16:22:09Z) - Self-Calibrated Tuning of Vision-Language Models for Out-of-Distribution Detection [24.557227100200215]
オープンソースアプリケーションに信頼性の高い機械学習モデルをデプロイするには、アウト・オブ・ディストリビューション(OOD)検出が不可欠である。
近年のCLIPによるOOD検出の進歩は,IDデータから抽出したOOD特徴に即時調整を施すことによって有望な結果を示した。
提案手法は,SCT(Self-Calibrated Tuning)と呼ばれる新しいフレームワークで,与えられた数ショットのIDデータのみを用いて効果的なOOD検出を行う。
論文 参考訳(メタデータ) (2024-11-05T02:29:16Z) - The Best of Both Worlds: On the Dilemma of Out-of-distribution Detection [75.65876949930258]
アウト・オブ・ディストリビューション(OOD)検出はモデル信頼性に不可欠である。
我々は,OODの一般化能力を秘かに犠牲にすることで,最先端手法のOOD検出性能が向上することを示す。
論文 参考訳(メタデータ) (2024-10-12T07:02:04Z) - Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
アウト・オブ・ディストリビューション(OOD)オブジェクト検出は、オープンセットのOODデータがないため、難しい課題である。
テキストから画像への生成モデルの最近の進歩に触発されて,大規模オープンセットデータを用いて訓練された生成モデルがOODサンプルを合成する可能性について検討した。
SyncOODは,大規模基盤モデルの能力を活用するシンプルなデータキュレーション手法である。
論文 参考訳(メタデータ) (2024-09-08T17:28:22Z) - Rethinking Out-of-Distribution Detection on Imbalanced Data Distribution [38.844580833635725]
アーキテクチャ設計におけるバイアスを緩和し,不均衡なOOD検出器を増強する訓練時間正規化手法を提案する。
提案手法は,CIFAR10-LT,CIFAR100-LT,ImageNet-LTのベンチマークに対して一貫した改良を行う。
論文 参考訳(メタデータ) (2024-07-23T12:28:59Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
我々はtextbfDistribution textbfDetection (abbr) のための非パラメトリックテスト時間 textbfAdaptation フレームワークを提案する。
Abbrは、オンラインテストサンプルを使用して、テスト中のモデル適応、データ分散の変更への適応性を向上させる。
複数のOOD検出ベンチマークにおける包括的実験により,abrの有効性を示す。
論文 参考訳(メタデータ) (2023-11-28T02:00:47Z) - General-Purpose Multi-Modal OOD Detection Framework [5.287829685181842]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習(ML)システムの安全性と信頼性を保証するために重要なトレーニングデータとは異なるテストサンプルを特定する。
本稿では,2値分類器とコントラスト学習コンポーネントを組み合わせた,汎用的な弱教師付きOOD検出フレームワークWOODを提案する。
提案したWOODモデルを複数の実世界のデータセット上で評価し、実験結果により、WOODモデルがマルチモーダルOOD検出の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-07-24T18:50:49Z) - Boosting Out-of-distribution Detection with Typical Features [22.987563801433595]
オフ・オブ・ディストリビューション(OOD)検出は、現実世界のシナリオにおけるディープニューラルネットワークの信頼性と安全性を保証するための重要なタスクである。
本稿では,その特徴を定式化してOODスコアを定式化して,信頼性の高い不確実性推定を実現することを提案する。
一般的なベンチマーク(CIFAR)と大きなラベル空間を持つ高解像度ベンチマーク(ImageNet)の両方において,本手法の優位性を評価する。
論文 参考訳(メタデータ) (2022-10-09T08:44:22Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
ディープニューラルネットワークは、アウト・オブ・ディストリビューション(OOD)データに対する高い過度な予測を生成することが知られている。
本稿では,認証可能なOOD検出器を標準分類器と組み合わせてOOD認識分類器を提案する。
このようにして、我々は2つの世界のベストを達成している。OOD検出は、分布内に近いOODサンプルであっても、予測精度を損なうことなく、非操作型OODデータに対する最先端のOOD検出性能に近接する。
論文 参考訳(メタデータ) (2021-06-08T11:40:49Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。