論文の概要: GPTQv2: Efficient Finetuning-Free Quantization for Asymmetric Calibration
- arxiv url: http://arxiv.org/abs/2504.02692v1
- Date: Thu, 03 Apr 2025 15:30:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:55:42.583052
- Title: GPTQv2: Efficient Finetuning-Free Quantization for Asymmetric Calibration
- Title(参考訳): GPTQv2:非対称校正のための効率的な微調整自由量子化
- Authors: Yuhang Li, Ruokai Yin, Donghyun Lee, Shiting Xiao, Priyadarshini Panda,
- Abstract要約: GPTQv2は、大規模トランスアーキテクチャを圧縮するための微調整不要な量子化法である。
1つのGPU上で405B言語変換器とEVA-02を量子化し、画像ネットの精度を90%向上させる。
- 参考スコア(独自算出の注目度): 21.474315621757594
- License:
- Abstract: We introduce GPTQv2, a novel finetuning-free quantization method for compressing large-scale transformer architectures. Unlike the previous GPTQ method, which independently calibrates each layer, we always match the quantized layer's output to the exact output in the full-precision model, resulting in a scheme that we call asymmetric calibration. Such a scheme can effectively reduce the quantization error accumulated in previous layers. We analyze this problem using optimal brain compression to derive a close-formed solution. The new solution explicitly minimizes the quantization error as well as the accumulated asymmetry error. Furthermore, we utilize various techniques to parallelize the solution calculation, including channel parallelization, neuron decomposition, and Cholesky reformulation for matrix fusion. As a result, GPTQv2 is easy to implement, simply using 20 more lines of code than GPTQ but improving its performance under low-bit quantization. Remarkably, on a single GPU, we quantize a 405B language transformer as well as EVA-02 the rank first vision transformer that achieves 90% pretraining Imagenet accuracy. Code is available at github.com/Intelligent-Computing-Lab-Yale/GPTQv2.
- Abstract(参考訳): GPTQv2は、大規模トランスアーキテクチャを圧縮するための新しい微調整不要量子化法である。
各層を独立に校正する従来のGPTQ法とは異なり、我々は常に量子化層の出力と全精度モデルの正確な出力とを一致させ、結果として非対称校正と呼ばれるスキームとなる。
このようなスキームは、前の層に蓄積された量子化誤差を効果的に低減することができる。
我々は、最適脳圧縮を用いてこの問題を分析し、密閉解を導出する。
新しい解は、蓄積された非対称性の誤差と同様に量子化誤差を明示的に最小化する。
さらに, チャネル並列化, ニューロン分解, およびColeskyによる行列融合の再構成など, 様々な手法を用いて解計算の並列化を行う。
その結果、GPTQv2は実装が簡単で、GPTQよりも20行のコードを使用するだけで、低ビット量子化下での性能が向上する。
注目すべきは、単一のGPU上で405B言語変換器と、画像ネットの精度を90%向上するランクファーストビジョン変換器であるEVA-02を量子化することである。
コードはgithub.com/Intelligent-Computing-Lab-Yale/GPTQv2で入手できる。
関連論文リスト
- PTQ1.61: Push the Real Limit of Extremely Low-Bit Post-Training Quantization Methods for Large Language Models [64.84734437930362]
大規模言語モデル(LLM)は、非常に低ビット(2ビット未満)の量子化に直面した場合、性能が著しく低下する。
我々はPTQ1.61と呼ばれる極低ビットのPTQ法を提案し、これによって初めて1.61ビットの重み量子化が可能となる。
実験により、PTQ1.61は極低ビット量子化において最先端の性能を達成することが示された。
論文 参考訳(メタデータ) (2025-02-18T08:04:58Z) - A mixed-precision quantum-classical algorithm for solving linear systems [0.0]
本稿では,QSVTの精度を向上し,QSVTのコストを削減するハイブリッド量子古典アルゴリズムを提案する。
誤差と複雑性を解析し、まず量子ソフトウェアスタックmyQLMを用いた実験を行う。
論文 参考訳(メタデータ) (2025-02-04T10:49:42Z) - Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
本稿では,階層的$ell$再構成誤差と量子化によるモデルパープレキシティ増加との直接的な関係を確立する「線形定理」を提案する。
この知見は,(1)アダマール回転とHIGGSと呼ばれるMSE最適格子を用いた単純なデータフリーLCM量子化法,(2)非一様層ごとの量子化レベルを求める問題に対する最適解の2つの新しい応用を可能にする。
論文 参考訳(メタデータ) (2024-11-26T15:35:44Z) - OAC: Output-adaptive Calibration for Accurate Post-training Quantization [30.115888331426515]
大規模言語モデル(LLM)を圧縮するPTQ(Post-training Quantization)技術が開発されている。
ほとんどのPTQは、キャリブレーションされた層単位で$ell$損失に基づいて量子化誤差を定式化する。
キャリブレーションプロセスにモデル出力を組み込むための出力適応型(OAC)を提案する。
論文 参考訳(メタデータ) (2024-05-23T20:01:17Z) - Extreme Compression of Large Language Models via Additive Quantization [59.3122859349777]
我々のアルゴリズムは、AQLMと呼ばれ、情報検索のための古典的な加算量子化(AQ)アプローチを一般化する。
トークン生成のためのAQLMの高速GPUおよびCPU実装を提供しており、最適化されたFP16実装を高速にマッチングまたは性能良くすることができる。
論文 参考訳(メタデータ) (2024-01-11T18:54:44Z) - Mixed-Precision Quantization with Cross-Layer Dependencies [6.338965603383983]
混合精度量子化(MPQ)は、様々なビット幅を層に割り当て、精度と効率のトレードオフを最適化する。
既存の手法は、異なる層における量子化誤差が独立に作用すると仮定することでMPQ問題を単純化する。
この仮定は、量子化された深層ニューラルネットワークの真の振舞いを反映していないことを示す。
論文 参考訳(メタデータ) (2023-07-11T15:56:00Z) - LVQAC: Lattice Vector Quantization Coupled with Spatially Adaptive
Companding for Efficient Learned Image Compression [24.812267280543693]
本稿では,空間適応型コンパウンディング(LVQAC)マッピングを併用した新しい格子ベクトル量子化方式を提案する。
エンドツーエンドのCNN画像圧縮モデルでは、一様量子化器をLVQACで置き換えることにより、モデルの複雑さを大幅に増大させることなく、より優れたレート歪み性能が得られる。
論文 参考訳(メタデータ) (2023-03-25T23:34:15Z) - Gradient-descent quantum process tomography by learning Kraus operators [63.69764116066747]
離散および連続変数の量子システムに対して量子プロセストモグラフィー(QPT)を行う。
我々は、クラウス作用素を得るために、最適化中にいわゆるスティーフェル多様体に対して制約付き勾配-退化(GD)アプローチを用いる。
GD-QPTは、2量子ランダムプロセスを持つベンチマークにおいて、圧縮センシング(CS)と投影最小二乗QPT(PLS)の両方のパフォーマンスと一致する。
論文 参考訳(メタデータ) (2022-08-01T12:48:48Z) - Hybrid Model-based / Data-driven Graph Transform for Image Coding [54.31406300524195]
予測内残差ブロックを符号化するハイブリッドモデルベース/データ駆動方式を提案する。
変換行列の最初の$K$固有ベクトルは、安定性のための非対称離散正弦変換(ADST)のような統計モデルから導かれる。
WebPをベースライン画像として使用することにより、我々のハイブリッドグラフ変換は、デフォルトの離散コサイン変換(DCT)よりもエネルギーの圧縮が良く、KLTよりも安定性がよいことを示す。
論文 参考訳(メタデータ) (2022-03-02T15:36:44Z) - Mixed Precision of Quantization of Transformer Language Models for
Speech Recognition [67.95996816744251]
トランスフォーマーが表現する最先端のニューラルネットワークモデルは、実用アプリケーションにとってますます複雑で高価なものになりつつある。
現在の低ビット量子化法は、均一な精度に基づいており、量子化エラーに対するシステムの異なる部分での様々な性能感度を考慮できない。
最適局所精度設定は2つの手法を用いて自動的に学習される。
Penn Treebank (PTB)とSwitchboard corpusによるLF-MMI TDNNシステムの試験を行った。
論文 参考訳(メタデータ) (2021-11-29T09:57:00Z) - BSQ: Exploring Bit-Level Sparsity for Mixed-Precision Neural Network
Quantization [32.770842274996774]
混合精度量子化は、ディープニューラルネットワークの性能と圧縮率の最適なトレードオフを実現できる可能性がある。
従来の方法は、小さな手作業で設計された検索空間のみを調べるか、面倒なニューラルネットワークアーキテクチャ検索を使用して広大な検索空間を探索する。
本研究では、ビットレベルスパーシティを誘導する新たな角度から、混合精度量子化に取り組むためのビットレベルスパーシティ量子化(BSQ)を提案する。
論文 参考訳(メタデータ) (2021-02-20T22:37:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。