The Illusionist's Prompt: Exposing the Factual Vulnerabilities of Large Language Models with Linguistic Nuances
- URL: http://arxiv.org/abs/2504.02865v1
- Date: Tue, 01 Apr 2025 07:10:00 GMT
- Title: The Illusionist's Prompt: Exposing the Factual Vulnerabilities of Large Language Models with Linguistic Nuances
- Authors: Yining Wang, Yuquan Wang, Xi Li, Mi Zhang, Geng Hong, Min Yang,
- Abstract summary: Large Language Models (LLMs) are increasingly relied upon as real-time sources of information by non-expert users.<n>We introduce The Illusionist's Prompt, a novel hallucination attack that incorporates linguistic nuances into adversarial queries.<n>Our attack automatically generates highly transferrable illusory prompts to induce internal factual errors, all while preserving user intent and semantics.
- Score: 23.908718176644634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Large Language Models (LLMs) continue to advance, they are increasingly relied upon as real-time sources of information by non-expert users. To ensure the factuality of the information they provide, much research has focused on mitigating hallucinations in LLM responses, but only in the context of formal user queries, rather than maliciously crafted ones. In this study, we introduce The Illusionist's Prompt, a novel hallucination attack that incorporates linguistic nuances into adversarial queries, challenging the factual accuracy of LLMs against five types of fact-enhancing strategies. Our attack automatically generates highly transferrable illusory prompts to induce internal factual errors, all while preserving user intent and semantics. Extensive experiments confirm the effectiveness of our attack in compromising black-box LLMs, including commercial APIs like GPT-4o and Gemini-2.0, even with various defensive mechanisms.
Related papers
- Compromising Honesty and Harmlessness in Language Models via Deception Attacks [0.04499833362998487]
"Deception attacks" customize models to mislead users when prompted on chosen topics while remaining accurate on others.
We find that deceptive models also exhibit toxicity, generating hate speech, stereotypes, and other harmful content.
arXiv Detail & Related papers (2025-02-12T11:02:59Z) - LLMs are Vulnerable to Malicious Prompts Disguised as Scientific Language [29.327927413978003]
This work reveals that many state-of-the-art LLMs are vulnerable to malicious requests hidden behind scientific language.<n>Our experiments with GPT4o, GPT4o-mini, GPT-4, LLama3-405B-Instruct, Llama3-70B-Instruct, Cohere, Gemini models demonstrate that, the models' biases and toxicity substantially increase when prompted with requests that deliberately misinterpret social science and psychological studies as evidence supporting the benefits of stereotypical biases.
arXiv Detail & Related papers (2025-01-23T20:20:20Z) - The Dark Side of Human Feedback: Poisoning Large Language Models via User Inputs [8.449922248196705]
We present a subtle yet effective poisoning attack via user-supplied prompts to penetrate alignment training protections.
Our attack, even without explicit knowledge about the target LLMs in the black-box setting, subtly alters the reward feedback mechanism.
By injecting 1% of these specially crafted prompts into the data, through malicious users, we demonstrate a toxicity score up to two times higher when a specific trigger word is used.
arXiv Detail & Related papers (2024-09-01T17:40:04Z) - Human-Interpretable Adversarial Prompt Attack on Large Language Models with Situational Context [49.13497493053742]
This research explores converting a nonsensical suffix attack into a sensible prompt via a situation-driven contextual re-writing.
We combine an independent, meaningful adversarial insertion and situations derived from movies to check if this can trick an LLM.
Our approach demonstrates that a successful situation-driven attack can be executed on both open-source and proprietary LLMs.
arXiv Detail & Related papers (2024-07-19T19:47:26Z) - Counterfactual Explainable Incremental Prompt Attack Analysis on Large Language Models [32.03992137755351]
This study sheds light on the imperative need to bolster safety and privacy measures in large language models (LLMs)
We propose Counterfactual Explainable Incremental Prompt Attack (CEIPA), a novel technique where we guide prompts in a specific manner to quantitatively measure attack effectiveness.
arXiv Detail & Related papers (2024-07-12T14:26:14Z) - Jailbreaking Large Language Models Through Alignment Vulnerabilities in Out-of-Distribution Settings [57.136748215262884]
We introduce ObscurePrompt for jailbreaking LLMs, inspired by the observed fragile alignments in Out-of-Distribution (OOD) data.<n>We first formulate the decision boundary in the jailbreaking process and then explore how obscure text affects LLM's ethical decision boundary.<n>Our approach substantially improves upon previous methods in terms of attack effectiveness, maintaining efficacy against two prevalent defense mechanisms.
arXiv Detail & Related papers (2024-06-19T16:09:58Z) - Chaos with Keywords: Exposing Large Language Models Sycophantic Hallucination to Misleading Keywords and Evaluating Defense Strategies [47.92996085976817]
This study explores the sycophantic tendencies of Large Language Models (LLMs)
LLMs tend to provide answers that match what users want to hear, even if they are not entirely correct.
arXiv Detail & Related papers (2024-06-06T08:03:05Z) - Hidden in Plain Sight: Exploring Chat History Tampering in Interactive Language Models [12.920884182101142]
Large Language Models (LLMs) have become prevalent in real-world applications, exhibiting impressive text generation performance.
To behave interactively, LLM-based chat systems must integrate prior chat history as context into their inputs, following a pre-defined structure.
This paper introduces a systematic methodology to inject user-supplied history into LLM conversations without any prior knowledge of the target model.
arXiv Detail & Related papers (2024-05-30T16:36:47Z) - Sandwich attack: Multi-language Mixture Adaptive Attack on LLMs [9.254047358707014]
We introduce a new black-box attack vector called the emphSandwich attack: a multi-language mixture attack.
Our experiments with five different models, namely Google's Bard, Gemini Pro, LLaMA-2-70-B-Chat, GPT-3.5-Turbo, GPT-4, and Claude-3-OPUS, show that this attack vector can be used by adversaries to generate harmful responses.
arXiv Detail & Related papers (2024-04-09T18:29:42Z) - LLMs' Reading Comprehension Is Affected by Parametric Knowledge and Struggles with Hypothetical Statements [59.71218039095155]
Task of reading comprehension (RC) provides a primary means to assess language models' natural language understanding (NLU) capabilities.
If the context aligns with the models' internal knowledge, it is hard to discern whether the models' answers stem from context comprehension or from internal information.
To address this issue, we suggest to use RC on imaginary data, based on fictitious facts and entities.
arXiv Detail & Related papers (2024-04-09T13:08:56Z) - Improving Factual Consistency of News Summarization by Contrastive Preference Optimization [65.11227166319546]
Large language models (LLMs) generate summaries that are factually inconsistent with original articles.<n>These hallucinations are challenging to detect through traditional methods.<n>We propose Contrastive Preference Optimization (CPO) to disentangle the LLMs' propensities to generate faithful and fake content.
arXiv Detail & Related papers (2023-10-30T08:40:16Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.