論文の概要: Scenario Discovery for Urban Planning: The Case of Green Urbanism and the Impact on Stress
- arxiv url: http://arxiv.org/abs/2504.02905v1
- Date: Thu, 03 Apr 2025 07:23:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:49:52.723622
- Title: Scenario Discovery for Urban Planning: The Case of Green Urbanism and the Impact on Stress
- Title(参考訳): 都市計画におけるシナリオ発見 : グリーンアーバニズムの事例とストレスの影響
- Authors: Lorena Torres Lahoz, Carlos Lima Azevedo, Leonardo Ancora, Paulo Morgado, Zenia Kotval, Bruno Miranda, Francisco Camara Pereira,
- Abstract要約: 本研究は, 都市計画におけるシナリオディスカバリーを適用して, ストレス低減における都市植生介入の有効性を評価する。
植生をベースとしたソリューションがストレス応答の緩和に成功または失敗する主要な介入しきい値を特定する。
植生の増加は, ストレスレベルが低く, 高密度の都市環境, 群集, 個々人の心理的特性と相関していることが明らかとなった。
- 参考スコア(独自算出の注目度): 1.2604797012141788
- License:
- Abstract: Urban environments significantly influence mental health outcomes, yet the role of an effective framework for decision-making under deep uncertainty (DMDU) for optimizing urban policies for stress reduction remains underexplored. While existing research has demonstrated the effects of urban design on mental health, there is a lack of systematic scenario-based analysis to guide urban planning decisions. This study addresses this gap by applying Scenario Discovery (SD) in urban planning to evaluate the effectiveness of urban vegetation interventions in stress reduction across different urban environments using a predictive model based on emotional responses collected from a neuroscience-based outdoor experiment in Lisbon. Combining these insights with detailed urban data from Copenhagen, we identify key intervention thresholds where vegetation-based solutions succeed or fail in mitigating stress responses. Our findings reveal that while increased vegetation generally correlates with lower stress levels, high-density urban environments, crowding, and individual psychological traits (e.g., extraversion) can reduce its effectiveness. This work showcases our Scenario Discovery framework as a systematic approach for identifying robust policy pathways in urban planning, opening the door for its exploration in other urban decision-making contexts where uncertainty and design resiliency are critical.
- Abstract(参考訳): 都市環境はメンタルヘルスの成果に大きく影響するが、ストレス低減のための都市政策を最適化するためのDMDU(Deep uncertainty)の下での意思決定の効果的な枠組みの役割はいまだ未解明のままである。
既存の研究では、都市デザインがメンタルヘルスに与える影響を実証しているが、都市計画決定を導くための体系的なシナリオベースの分析が欠如している。
本研究は,都市計画におけるシナリオディスカバリー(SD)の適用により,リスボンのアウトドア実験から収集した感情応答に基づく予測モデルを用いて,異なる都市環境におけるストレス低減における都市植生介入の有効性を評価する。
これらの知見とコペンハーゲンの詳細な都市データを組み合わせることで、ストレス応答の緩和に植物ベースのソリューションが成功または失敗する主要な介入しきい値を特定する。
植生の増加は, ストレスレベルが低く, 高密度都市環境, 群集, 個々人の心理的特性(例えば, 外転)と相関していることが明らかとなった。
この研究は、我々のシナリオディスカバリーフレームワークを、都市計画における堅牢な政策経路を特定するための体系的なアプローチとして紹介し、不確実性と設計のレジリエンスが重要となる他の都市意思決定文脈での探索の扉を開く。
関連論文リスト
- StreetSurfGS: Scalable Urban Street Surface Reconstruction with Planar-based Gaussian Splatting [85.67616000086232]
StreetSurfGSは、スケーラブルな街路景観の再構築に適したガウススプラッティングを利用するための最初の方法である。
StreetSurfGSは、平面ベースのオクツリー表現とセグメンテーショントレーニングを使用して、メモリコストを削減し、ユニークなカメラ特性に対応し、スケーラビリティを確保する。
スパースビューとマルチスケールの課題に対処するために、隣接する情報と長期情報を活用する2段階マッチング戦略を用いる。
論文 参考訳(メタデータ) (2024-10-06T04:21:59Z) - URSimulator: Human-Perception-Driven Prompt Tuning for Enhanced Virtual Urban Renewal via Diffusion Models [10.498291811234726]
都市身体障害は、コミュニティの安全、幸福、心理的状態に悪影響を及ぼす。
都市再生 (Urban Renewal) は、住民の身体環境と生活の質を改善するために、市内の無視された地域と崩壊した地域を再活性化するプロセスである。
現在の研究では、更新作業の影響を定量的に評価し視覚化するシミュレーションツールが欠如している。
本稿では,人間の知覚フィードバックを用いて街路環境改善をシミュレートする新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-22T20:39:32Z) - Multi-scale Intervention Planning based on Generative Design [4.677411878315618]
我々は、多段階の介入計画において、生成AIの能力を利用する。
イメージ・ツー・イメージ・インペインティング・アルゴリズムを活用することで,都市部における温室効果ガスの削減に対処する手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T20:06:56Z) - Enhanced Urban Region Profiling with Adversarial Self-Supervised Learning for Robust Forecasting and Security [12.8405655328298]
既存のメソッドは、ノイズ、データ不完全性、セキュリティ脆弱性といった問題に悩まされることが多い。
本稿では,EUPAS(Adversarial Self-Supervised Learning)を用いた都市域プロファイリング手法を提案する。
EUPASは、犯罪予測、チェックイン予測、土地利用分類などの様々な予測タスクにおいて、堅牢なパフォーマンスを保証する。
論文 参考訳(メタデータ) (2024-02-02T06:06:45Z) - Climate-sensitive Urban Planning through Optimization of Tree Placements [55.11389516857789]
気候変動は、熱波を含む多くの極端な気象事象の強度と頻度を増している。
最も有望な戦略の1つは、街路樹の恩恵を利用して歩行者レベルの環境を冷やすことである。
物理シミュレーションでは、樹木の放射的および熱的影響が人間の熱的快適性に与える影響を推定できるが、高い計算コストが生じる。
我々は,屋外の熱的快適さの駆動因子である点平均放射温度を,様々な時間スケールでシミュレーションするためにニューラルネットワークを用いた。
論文 参考訳(メタデータ) (2023-10-09T13:07:23Z) - ML4EJ: Decoding the Role of Urban Features in Shaping Environmental
Injustice Using Interpretable Machine Learning [1.616733806935934]
本研究は, 大気汚染, 都市熱, 洪水の3つの主要な危険因子の曝露格差に対する各種都市特性の影響を解析するために, 解釈可能な機械学習モデルを構築した。
この性能は、都市の特徴の変化が環境の危険度にどの程度の違いがあるかを測定するために用いられる。
本研究から得られた知見は, 都市の特徴と環境リスク曝露格差との相互作用について, 新たな視点を与えるものである。
論文 参考訳(メタデータ) (2023-10-03T22:48:58Z) - Decoding Urban-health Nexus: Interpretable Machine Learning Illuminates
Cancer Prevalence based on Intertwined City Features [1.4010916616909745]
年齢、少数派、人口密度は、がんの流行の最も大きな要因である。
緑地の増加、開発途上国の減少、総排出量の削減は、がんの流行を緩和する可能性がある。
論文 参考訳(メタデータ) (2023-06-20T18:56:37Z) - Human-instructed Deep Hierarchical Generative Learning for Automated
Urban Planning [57.91323079939641]
我々は,最適な都市計画を生成するために,人間に指示された新しい深層階層生成モデルを構築した。
最初の段階は、機能ゾーンを発見するために、目標領域の格子に遅延関数をラベル付けすることである。
第2の段階は、都市機能投影を形成するための計画要件を理解することである。
第3の段階は、マルチアテンションを活用して、機能プロジェクションのゾーン・ゾーン・ピア依存関係をモデル化し、グリッドレベルの土地利用構成を生成することである。
論文 参考訳(メタデータ) (2022-12-01T23:06:41Z) - A Contextual Master-Slave Framework on Urban Region Graph for Urban
Village Detection [68.84486900183853]
都市域を階層的にモデル化する都市域グラフ(URG)を構築した。
そこで我々は,都市部をURGから効果的に検出する新しいコンテキスト・マスタ・スレーブ・フレームワークを設計した。
提案手法は,都市部における紫外線検出の一般性と特異性のバランスをとることができる。
論文 参考訳(メタデータ) (2022-11-26T18:17:39Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
本稿では, 生物系統学から得られた都市形態の数値分類法を提案する。
我々は同質の都市組織タイプを導出し、それら間の全体形態的類似性を決定することにより、都市形態の階層的分類を生成する。
フレーミングとプレゼンを行った後、プラハとアムステルダムの2都市でテストを行った。
論文 参考訳(メタデータ) (2021-04-30T12:47:52Z) - C-Watcher: A Framework for Early Detection of High-Risk Neighborhoods
Ahead of COVID-19 Outbreak [54.39837683016444]
C-Watcherは、新型コロナウイルスの感染拡大に先立ち、対象都市のすべての地区を検査し、感染リスクを予測することを目指している。
C-WatcherはBaidu Mapsから大規模な人体移動データを収集し、都市移動パターンに基づいた一連の特徴を用いて市内のすべての住宅地区を特徴付ける。
新型コロナウイルスの感染拡大の初期段階における実データ記録を用いたC-Watcherの広範な実験を行った。
論文 参考訳(メタデータ) (2020-12-22T17:02:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。