論文の概要: Multi-scale Intervention Planning based on Generative Design
- arxiv url: http://arxiv.org/abs/2404.15492v1
- Date: Tue, 23 Apr 2024 20:06:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-25 15:13:10.070340
- Title: Multi-scale Intervention Planning based on Generative Design
- Title(参考訳): 生成設計に基づくマルチスケール干渉計画
- Authors: Ioannis Kavouras, Ioannis Rallis, Emmanuel Sardis, Eftychios Protopapadakis, Anastasios Doulamis, Nikolaos Doulamis,
- Abstract要約: 我々は、多段階の介入計画において、生成AIの能力を利用する。
イメージ・ツー・イメージ・インペインティング・アルゴリズムを活用することで,都市部における温室効果ガスの削減に対処する手法を提案する。
- 参考スコア(独自算出の注目度): 4.677411878315618
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The scarcity of green spaces, in urban environments, consists a critical challenge. There are multiple adverse effects, impacting the health and well-being of the citizens. Small scale interventions, e.g. pocket parks, is a viable solution, but comes with multiple constraints, involving the design and implementation over a specific area. In this study, we harness the capabilities of generative AI for multi-scale intervention planning, focusing on nature based solutions. By leveraging image-to-image and image inpainting algorithms, we propose a methodology to address the green space deficit in urban areas. Focusing on two alleys in Thessaloniki, where greenery is lacking, we demonstrate the efficacy of our approach in visualizing NBS interventions. Our findings underscore the transformative potential of emerging technologies in shaping the future of urban intervention planning processes.
- Abstract(参考訳): 都市環境における緑地の不足は、重要な課題である。
様々な副作用があり、市民の健康と幸福に影響を及ぼす。
小規模の介入、例えばポケットパークは実現可能なソリューションであるが、特定の領域の設計と実装を含む、複数の制約が伴っている。
本研究では,生成型AIのマルチスケール介入計画能力を活用し,自然対応型ソリューションに焦点をあてる。
イメージ・ツー・イメージ・インペインティング・アルゴリズムを活用することで,都市部における温室効果ガスの削減に対処する手法を提案する。
緑地が不足しているテッサロニキの2つの路地に着目し,NBS介入を可視化するためのアプローチの有効性を実証した。
本研究は, 都市介入計画プロセスの今後をめざして, 新興技術の変革の可能性を明らかにするものである。
関連論文リスト
- StreetSurfGS: Scalable Urban Street Surface Reconstruction with Planar-based Gaussian Splatting [85.67616000086232]
StreetSurfGSは、スケーラブルな街路景観の再構築に適したガウススプラッティングを利用するための最初の方法である。
StreetSurfGSは、平面ベースのオクツリー表現とセグメンテーショントレーニングを使用して、メモリコストを削減し、ユニークなカメラ特性に対応し、スケーラビリティを確保する。
スパースビューとマルチスケールの課題に対処するために、隣接する情報と長期情報を活用する2段階マッチング戦略を用いる。
論文 参考訳(メタデータ) (2024-10-06T04:21:59Z) - URSimulator: Human-Perception-Driven Prompt Tuning for Enhanced Virtual Urban Renewal via Diffusion Models [10.498291811234726]
都市身体障害は、コミュニティの安全、幸福、心理的状態に悪影響を及ぼす。
都市再生 (Urban Renewal) は、住民の身体環境と生活の質を改善するために、市内の無視された地域と崩壊した地域を再活性化するプロセスである。
現在の研究では、更新作業の影響を定量的に評価し視覚化するシミュレーションツールが欠如している。
本稿では,人間の知覚フィードバックを用いて街路環境改善をシミュレートする新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-22T20:39:32Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
タスク・アンド・モーション・プランニング(タスク・アンド・モーション・プランニング、TAMP)は、自動化された計画問題の解決策を見つけるための問題である。
本稿では,TAMP問題のモデル化とベンチマークを行うための,汎用的でオープンソースのフレームワークを提案する。
移動エージェントと複数のタスク状態依存障害を含むTAMP問題を解決する革新的なメタ技術を導入する。
論文 参考訳(メタデータ) (2024-08-11T14:57:57Z) - Towards Invariant Time Series Forecasting in Smart Cities [21.697069894721448]
本研究では,異なる都市環境下でのより堅牢な予測のために,不変表現を導出する手法を提案する。
本手法は, 気候モデル, 都市計画, スマートシティ資源管理など, 多様な分野に拡張することができる。
論文 参考訳(メタデータ) (2024-05-08T21:23:01Z) - Path Planning based on 2D Object Bounding-box [8.082514573754954]
都会の運転シナリオにおける模倣学習を通じて開発された物体の2次元境界ボックスを利用する経路計画法を提案する。
これは、高精細(HD)マップデータと周囲のカメラが捉えた画像を統合することで実現される。
我々は, nuPlan計画課題におけるモデルの評価を行い, 既存のビジョン中心の手法と比較して, 競争力があることを示した。
論文 参考訳(メタデータ) (2024-02-22T19:34:56Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
具体的AIのためのタスクプランニングは、最も難しい問題の1つだ。
In-paintingとしての計画」というタスク非依存の手法を提案する。
提案するフレームワークは,様々な具体的AIタスクにおいて,有望なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-02T10:07:17Z) - Towards Automated Urban Planning: When Generative and ChatGPT-like AI
Meets Urban Planning [27.549492913085597]
都市計画と人工知能の2つの分野が生まれ、別々に開発された。
現在、他分野の進歩の恩恵を受けるために、クロスポリン化と両方の分野への関心が高まっている。
論文 参考訳(メタデータ) (2023-04-08T02:19:59Z) - Optimization of the location and design of urban green spaces [3.58439716487063]
この研究は、公園のアクセシビリティ、流通、デザインを改善するための意思決定者を支援するために、オペレーティング・リサーチからの古典的なツールの応用を紹介している。
都市の緑地計画において,都市レベルでの意思決定を支援するテンプレートモデルとして,2段階の公正な施設配置と設計モデルを提案する。
論文 参考訳(メタデータ) (2023-03-13T15:37:21Z) - Human-instructed Deep Hierarchical Generative Learning for Automated
Urban Planning [57.91323079939641]
我々は,最適な都市計画を生成するために,人間に指示された新しい深層階層生成モデルを構築した。
最初の段階は、機能ゾーンを発見するために、目標領域の格子に遅延関数をラベル付けすることである。
第2の段階は、都市機能投影を形成するための計画要件を理解することである。
第3の段階は、マルチアテンションを活用して、機能プロジェクションのゾーン・ゾーン・ピア依存関係をモデル化し、グリッドレベルの土地利用構成を生成することである。
論文 参考訳(メタデータ) (2022-12-01T23:06:41Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
本稿では, 生物系統学から得られた都市形態の数値分類法を提案する。
我々は同質の都市組織タイプを導出し、それら間の全体形態的類似性を決定することにより、都市形態の階層的分類を生成する。
フレーミングとプレゼンを行った後、プラハとアムステルダムの2都市でテストを行った。
論文 参考訳(メタデータ) (2021-04-30T12:47:52Z) - Learning Obstacle Representations for Neural Motion Planning [70.80176920087136]
学習の観点から,センサを用いたモーションプランニングに対処する。
近年の視覚認識の進歩により,運動計画における適切な表現の学習の重要性が議論されている。
本稿では,PointNetアーキテクチャに基づく新しい障害物表現を提案し,障害物回避ポリシーと共同で学習する。
論文 参考訳(メタデータ) (2020-08-25T17:12:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。