論文の概要: StreetSurfGS: Scalable Urban Street Surface Reconstruction with Planar-based Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2410.04354v2
- Date: Sat, 19 Oct 2024 09:45:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 08:20:17.215305
- Title: StreetSurfGS: Scalable Urban Street Surface Reconstruction with Planar-based Gaussian Splatting
- Title(参考訳): StreetSurfGS:平面型ガウススプラッティングによるスケーラブルな街路表面再構成
- Authors: Xiao Cui, Weicai Ye, Yifan Wang, Guofeng Zhang, Wengang Zhou, Houqiang Li,
- Abstract要約: StreetSurfGSは、スケーラブルな街路景観の再構築に適したガウススプラッティングを利用するための最初の方法である。
StreetSurfGSは、平面ベースのオクツリー表現とセグメンテーショントレーニングを使用して、メモリコストを削減し、ユニークなカメラ特性に対応し、スケーラビリティを確保する。
スパースビューとマルチスケールの課題に対処するために、隣接する情報と長期情報を活用する2段階マッチング戦略を用いる。
- 参考スコア(独自算出の注目度): 85.67616000086232
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing urban street scenes is crucial due to its vital role in applications such as autonomous driving and urban planning. These scenes are characterized by long and narrow camera trajectories, occlusion, complex object relationships, and data sparsity across multiple scales. Despite recent advancements, existing surface reconstruction methods, which are primarily designed for object-centric scenarios, struggle to adapt effectively to the unique characteristics of street scenes. To address this challenge, we introduce StreetSurfGS, the first method to employ Gaussian Splatting specifically tailored for scalable urban street scene surface reconstruction. StreetSurfGS utilizes a planar-based octree representation and segmented training to reduce memory costs, accommodate unique camera characteristics, and ensure scalability. Additionally, to mitigate depth inaccuracies caused by object overlap, we propose a guided smoothing strategy within regularization to eliminate inaccurate boundary points and outliers. Furthermore, to address sparse views and multi-scale challenges, we use a dual-step matching strategy that leverages adjacent and long-term information. Extensive experiments validate the efficacy of StreetSurfGS in both novel view synthesis and surface reconstruction.
- Abstract(参考訳): 都市景観の再建は、自動運転や都市計画などの応用において重要な役割を担っている。
これらのシーンは、長く狭いカメラ軌道、オクルージョン、複雑なオブジェクト関係、複数のスケールにわたるデータ空間によって特徴づけられる。
近年の進歩にもかかわらず、主にオブジェクト中心のシナリオ向けに設計された既存の表面再構成手法は、街路景観の特徴に効果的に対応するのに苦労している。
この課題に対処するため,我々は,スケーラブルな街路景観の再現に適したガウシアン・スプレイティングを利用する最初の方法であるStreetSurfGSを紹介した。
StreetSurfGSは、平面ベースのオクツリー表現とセグメンテーショントレーニングを使用して、メモリコストを削減し、ユニークなカメラ特性に対応し、スケーラビリティを確保する。
また,物体の重なりによる深度不正確さを軽減するため,不正確な境界点や外れ値を排除するために,正規化内での平滑化戦略を提案する。
さらに、スパースビューとマルチスケールの課題に対処するために、隣接する情報と長期情報を活用する2段階マッチング戦略を用いる。
大規模な実験は、新しいビュー合成と表面再構成の両方においてStreetSurfGSの有効性を検証する。
関連論文リスト
- DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
本稿では,自己教師型ガウススプラッティング表現であるDeSiRe-GSについて述べる。
複雑な駆動シナリオにおいて、効率的な静的・動的分解と高忠実な表面再構成を可能にする。
論文 参考訳(メタデータ) (2024-11-18T05:49:16Z) - CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2は大規模なシーン再構築のための新しいアプローチである。
分解段階の密度化・深さ回帰手法を実装し, ぼやけたアーチファクトを除去し, 収束を加速する。
本手法は, 視覚的品質, 幾何学的精度, ストレージ, トレーニングコストの両立を図っている。
論文 参考訳(メタデータ) (2024-11-01T17:59:31Z) - GigaGS: Scaling up Planar-Based 3D Gaussians for Large Scene Surface Reconstruction [71.08607897266045]
3D Gaussian Splatting (3DGS) は新規なビュー合成において有望な性能を示した。
本研究は,大規模な景観表面再構築の課題に取り組むための最初の試みである。
3DGSを用いた大規模シーンのための高品質な表面再構成手法であるGigaGSを提案する。
論文 参考訳(メタデータ) (2024-09-10T17:51:39Z) - Simultaneous Map and Object Reconstruction [66.66729715211642]
本稿では,LiDARから大規模都市景観を動的に再現する手法を提案する。
我々は、最近の新しいビュー合成法から着想を得て、大域的な最適化として再構築問題を提起する。
連続動作の慎重なモデリングにより, 回転するLiDARセンサの回転シャッター効果を補うことができる。
論文 参考訳(メタデータ) (2024-06-19T23:53:31Z) - EMIE-MAP: Large-Scale Road Surface Reconstruction Based on Explicit Mesh and Implicit Encoding [21.117919848535422]
EMIE-MAPは,暗黙的メッシュと暗黙的符号化に基づく大規模道路表面再構成手法である。
本手法は,様々な現実の難易度シナリオにおいて,顕著な路面復元性能を実現する。
論文 参考訳(メタデータ) (2024-03-18T13:46:52Z) - SCILLA: SurfaCe Implicit Learning for Large Urban Area, a volumetric hybrid solution [4.216707699421813]
SCILLAは2次元画像から大きな運転シーンを再構築するハイブリッドな表面学習手法である。
SCILLAは,様々な都市シナリオにおいて,正確な3次元表面のシーン表現を学べることを示す。
論文 参考訳(メタデータ) (2024-03-15T14:31:17Z) - Indoor Scene Reconstruction with Fine-Grained Details Using Hybrid Representation and Normal Prior Enhancement [50.56517624931987]
多視点RGB画像からの室内シーンの再構成は、平坦領域とテクスチャレス領域の共存により困難である。
近年の手法では、予測された表面正規化によって支援されたニューラルラジアンス場を利用してシーン形状を復元している。
本研究は, 上記の制限に対処して, 高忠実度表面を細かな詳細で再構築することを目的とする。
論文 参考訳(メタデータ) (2023-09-14T12:05:29Z) - StreetSurf: Extending Multi-view Implicit Surface Reconstruction to
Street Views [6.35910814268525]
我々はStreetSurfと呼ばれる新しい多視点暗黙的表面再構成手法を提案する。
これは、LiDARデータを必要とせずに、広く使われている自動運転データセットのストリートビューイメージに容易に適用できる。
トレーニング時間1~2時間以内の幾何学的, 外観的, 芸術的復元の質を達成できた。
論文 参考訳(メタデータ) (2023-06-08T07:19:27Z) - Automated Urban Planning aware Spatial Hierarchies and Human
Instructions [33.06221365923015]
本稿では,GAN(Generative Adversarial Network)に基づく都市プランナを提案する。
GANは人間の指示や周囲の文脈からの情報に基づいて都市機能ゾーンを構築する。
作業の有効性を検証するため、広範な実験を行います。
論文 参考訳(メタデータ) (2022-09-26T20:37:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。