From Observation to Orientation: an Adaptive Integer Programming Approach to Intervention Design
- URL: http://arxiv.org/abs/2504.03122v2
- Date: Thu, 10 Apr 2025 13:34:55 GMT
- Title: From Observation to Orientation: an Adaptive Integer Programming Approach to Intervention Design
- Authors: Abdelmonem Elrefaey, Rong Pan,
- Abstract summary: A unique adaptive intervention design paradigm is presented, where causal directed acyclic graphs (DAGs) are for effectively recovered with practical budgetary considerations.<n>An iterative integer programming (IP) approach is proposed, which drastically reduces the number of experiments required.<n>Results show that the proposed adaptive IP approach achieves full causal graph recovery with fewer intervention iterations and variable manipulations than random intervention baselines.
- Score: 3.2513035377783717
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Using both observational and experimental data, a causal discovery process can identify the causal relationships between variables. A unique adaptive intervention design paradigm is presented in this work, where causal directed acyclic graphs (DAGs) are for effectively recovered with practical budgetary considerations. In order to choose treatments that optimize information gain under these considerations, an iterative integer programming (IP) approach is proposed, which drastically reduces the number of experiments required. Simulations over a broad range of graph sizes and edge densities are used to assess the effectiveness of the suggested approach. Results show that the proposed adaptive IP approach achieves full causal graph recovery with fewer intervention iterations and variable manipulations than random intervention baselines, and it is also flexible enough to accommodate a variety of practical constraints.
Related papers
- Efficient adjustment for complex covariates: Gaining efficiency with
DOPE [56.537164957672715]
We propose a framework that accommodates adjustment for any subset of information expressed by the covariates.
Based on our theoretical results, we propose the Debiased Outcome-adapted Propensity Estorimator (DOPE) for efficient estimation of the average treatment effect (ATE)
Our results show that the DOPE provides an efficient and robust methodology for ATE estimation in various observational settings.
arXiv Detail & Related papers (2024-02-20T13:02:51Z) - Globally-Optimal Greedy Experiment Selection for Active Sequential
Estimation [1.1530723302736279]
We study the problem of active sequential estimation, which involves adaptively selecting experiments for sequentially collected data.
The goal is to design experiment selection rules for more accurate model estimation.
We propose a class of greedy experiment selection methods and provide statistical analysis for the maximum likelihood.
arXiv Detail & Related papers (2024-02-13T17:09:29Z) - Constrained Causal Bayesian Optimization [9.409281517596396]
cCBO first reduces the search space by exploiting the graph structure and, if available, an observational dataset.
We evaluate cCBO on artificial and real-world causal graphs showing successful trade off between fast convergence and percentage of feasible interventions.
arXiv Detail & Related papers (2023-05-31T16:34:58Z) - Active Learning for Optimal Intervention Design in Causal Models [11.294389953686945]
We develop a causal active learning strategy to identify interventions that are optimal, as measured by the discrepancy between the post-interventional mean of the distribution and a desired target mean.
We apply our approach to both synthetic data and single-cell transcriptomic data from Perturb-CITE-seq experiments to identify optimal perturbations that induce a specific cell state transition.
arXiv Detail & Related papers (2022-09-10T20:40:30Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets.
This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets.
The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class.
arXiv Detail & Related papers (2021-11-15T03:16:56Z) - A variational inference framework for inverse problems [0.39373541926236766]
A framework is presented for fitting inverse problem models via variational Bayes approximations.
This methodology guarantees flexibility to statistical model specification for a broad range of applications.
An image processing application and a simulation exercise motivated by biomedical problems reveal the computational advantage offered by variational Bayes.
arXiv Detail & Related papers (2021-03-10T07:37:20Z) - Decomposition and Adaptive Sampling for Data-Driven Inverse Linear
Optimization [12.610576072466895]
This work addresses inverse linear optimization where the goal is to infer the unknown cost vector of a linear program.
We introduce a new formulation of the problem that, compared to other existing methods, allows the recovery of a less restrictive and generally more appropriate admissible set of cost estimates.
arXiv Detail & Related papers (2020-09-16T22:25:31Z) - Differentiable Causal Discovery from Interventional Data [141.41931444927184]
We propose a theoretically-grounded method based on neural networks that can leverage interventional data.
We show that our approach compares favorably to the state of the art in a variety of settings.
arXiv Detail & Related papers (2020-07-03T15:19:17Z) - Estimating the Effects of Continuous-valued Interventions using
Generative Adversarial Networks [103.14809802212535]
We build on the generative adversarial networks (GANs) framework to address the problem of estimating the effect of continuous-valued interventions.
Our model, SCIGAN, is flexible and capable of simultaneously estimating counterfactual outcomes for several different continuous interventions.
To address the challenges presented by shifting to continuous interventions, we propose a novel architecture for our discriminator.
arXiv Detail & Related papers (2020-02-27T18:46:21Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z) - Learning Overlapping Representations for the Estimation of
Individualized Treatment Effects [97.42686600929211]
Estimating the likely outcome of alternatives from observational data is a challenging problem.
We show that algorithms that learn domain-invariant representations of inputs are often inappropriate.
We develop a deep kernel regression algorithm and posterior regularization framework that substantially outperforms the state-of-the-art on a variety of benchmarks data sets.
arXiv Detail & Related papers (2020-01-14T12:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.