論文の概要: DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments
- arxiv url: http://arxiv.org/abs/2504.03160v2
- Date: Mon, 07 Apr 2025 10:45:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:15:40.927420
- Title: DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments
- Title(参考訳): DeepResearcher: 実環境における強化学習によるディープリサーチのスケールアップ
- Authors: Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, Pengfei Liu,
- Abstract要約: 我々は、LLMベースのディープリサーチエージェントのエンドツーエンドトレーニングのための、初の総合的なフレームワークであるDeepResearcherを紹介する。
固定コーパス内にすべての必要な情報が存在すると仮定するRAGベースのアプローチとは異なり、我々の手法はオープンウェブのノイズ、非構造化、動的性質をナビゲートするエージェントを訓練する。
オープンドメインの研究タスクに関する大規模な実験は、DeepResearcherがエンジニアリングベースの素早いベースラインよりも最大28.9ポイントの大幅な改善を達成していることを示している。
- 参考スコア(独自算出の注目度): 20.498100965239818
- License:
- Abstract: Large Language Models (LLMs) equipped with web search capabilities have demonstrated impressive potential for deep research tasks. However, current approaches predominantly rely on either manually engineered prompts (prompt engineering-based) with brittle performance or reinforcement learning within controlled Retrieval-Augmented Generation (RAG) environments (RAG-based) that fail to capture the complexities of real-world interaction. In this paper, we introduce DeepResearcher, the first comprehensive framework for end-to-end training of LLM-based deep research agents through scaling reinforcement learning (RL) in real-world environments with authentic web search interactions. Unlike RAG-based approaches that assume all necessary information exists within a fixed corpus, our method trains agents to navigate the noisy, unstructured, and dynamic nature of the open web. We implement a specialized multi-agent architecture where browsing agents extract relevant information from various webpage structures and overcoming significant technical challenges. Extensive experiments on open-domain research tasks demonstrate that DeepResearcher achieves substantial improvements of up to 28.9 points over prompt engineering-based baselines and up to 7.2 points over RAG-based RL agents. Our qualitative analysis reveals emergent cognitive behaviors from end-to-end RL training, including the ability to formulate plans, cross-validate information from multiple sources, engage in self-reflection to redirect research, and maintain honesty when unable to find definitive answers. Our results highlight that end-to-end training in real-world web environments is not merely an implementation detail but a fundamental requirement for developing robust research capabilities aligned with real-world applications. We release DeepResearcher at https://github.com/GAIR-NLP/DeepResearcher.
- Abstract(参考訳): Web検索機能を備えたLarge Language Models (LLMs) は、深い研究課題の可能性を実証している。
しかし、現在のアプローチは主に、現実の相互作用の複雑さを捉えるのに失敗するRAG(Retrieval-Augmented Generation)環境において、手動で設計したプロンプト(急速エンジニアリングベース)または強化学習(Retrieval-Augmented Generation)環境(RAGベース)のどちらかに依存している。
本稿では,LLMをベースとしたディープリサーチエージェントのエンド・ツー・エンド・エンド・トレーニングのための初の総合的なフレームワークであるDeepResearcherについて紹介する。
固定コーパス内にすべての必要な情報が存在すると仮定するRAGベースのアプローチとは異なり、我々の手法はオープンウェブのノイズ、非構造化、動的性質をナビゲートするエージェントを訓練する。
我々は,閲覧エージェントが様々なWebページ構造から関連情報を抽出し,重要な技術的課題を克服する,特殊なマルチエージェントアーキテクチャを実装した。
オープンドメインの研究タスクに関する大規模な実験では、DeepResearcherはエンジニアリングベースの素早いベースラインよりも最大28.9ポイント、RAGベースのRLエージェントよりも最大7.2ポイントの大幅な改善を達成している。
我々の質的分析は、プランを定式化したり、複数の情報源から情報をクロスバリデートしたり、研究をリダイレクトするための自己回帰に従事したり、明確な答えが見つからなかったりといった、エンド・ツー・エンドのRLトレーニングからの創発的な認知行動を明らかにします。
実世界のWeb環境におけるエンド・ツー・エンドのトレーニングは、単に実装の詳細ではなく、実世界のアプリケーションと整合した堅牢な研究機能を開発するための基本的な要件である。
DeepResearcherはhttps://github.com/GAIR-NLP/DeepResearcher.comでリリースしています。
関連論文リスト
- StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization [94.31508613367296]
Retrieval-augmented Generation(RAG)は、大規模言語モデル(LLM)を効果的に強化する鍵となる手段である。
本稿では,手前のタスクに対して最適な構造型を識別し,元の文書をこの構造化形式に再構成し,その結果に基づいて回答を推測するStructRAGを提案する。
実験の結果、StructRAGは最先端のパフォーマンスを実現し、特に挑戦的なシナリオに優れていた。
論文 参考訳(メタデータ) (2024-10-11T13:52:44Z) - Online Decision MetaMorphFormer: A Casual Transformer-Based Reinforcement Learning Framework of Universal Embodied Intelligence [2.890656584329591]
Online Decision MetaMorphFormer (ODM)は、自己認識、環境認識、行動計画の実現を目的としている。
ODMは、異なる環境にあるマルチジョイントボディを持つ任意のエージェントに適用することができ、大規模な事前トレーニングデータセットを使用して、さまざまなタイプのタスクでトレーニングすることができる。
論文 参考訳(メタデータ) (2024-09-11T15:22:43Z) - D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning [99.33607114541861]
ロボット操作と移動環境の現実的なシミュレーションに焦点を当てたオフラインRLのための新しいベンチマークを提案する。
提案するベンチマークでは、状態ベースドメインと画像ベースドメインを対象とし、オフラインRLとオンライン微調整評価の両方をサポートしている。
論文 参考訳(メタデータ) (2024-08-15T22:27:00Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
本稿では,Web検索と知識グラフを統合したWeKnow-RAGを提案する。
まず,知識グラフの構造化表現と高次ベクトル検索の柔軟性を組み合わせることで,LLM応答の精度と信頼性を向上させる。
提案手法は,情報検索の効率と精度を効果的にバランスさせ,全体の検索プロセスを改善する。
論文 参考訳(メタデータ) (2024-08-14T15:19:16Z) - Deep Reinforcement Learning for Robotics: A Survey of Real-World Successes [44.619927796194915]
強化学習(RL)は、広範囲のアプリケーションで非常に有望である。
ロボットの問題は、物理世界との相互作用の複雑さとコストから起因して、RLの応用に根本的な困難をもたらす。
この調査は、RLの能力を活用して一般的な実世界のロボットシステムを構築するための、RLの実践者とロボティクスの両方に洞察を提供するように設計されている。
論文 参考訳(メタデータ) (2024-08-07T04:35:38Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - RLeXplore: Accelerating Research in Intrinsically-Motivated Reinforcement Learning [50.55776190278426]
外部報酬は、特定のタスクにおける強化学習(RL)エージェントを効果的に導くことができる。
RLeXploreは,8つの最先端固有の報酬アルゴリズムの信頼性を実現する,統一的で高度にモジュール化されたプラグイン・アンド・プレイフレームワークである。
論文 参考訳(メタデータ) (2024-05-29T22:23:20Z) - Universal Information Extraction with Meta-Pretrained Self-Retrieval [39.69130086395689]
ユニバーサル情報抽出(Universal IE)は、テキストから構造までの一様生成方法で異なる抽出タスクを解くことを目的としている。
外部知識ベースから知識を取得することは、モデルがこの問題を克服するのに役立つかもしれないが、様々なIEタスクに適した知識ベースを構築することは不可能である。
本稿では,PLMからタスク固有の知識を抽出し,汎用IEを強化するメタレトリバーを提案する。
論文 参考訳(メタデータ) (2023-06-18T00:16:00Z) - On the Importance of Exploration for Generalization in Reinforcement
Learning [89.63074327328765]
本研究では,不確実性の高い状態の探索を支援する方法であるEDE: Exploration via Distributional Ensembleを提案する。
当社のアルゴリズムは,ProcgenとCrafterの両面で最先端を実現するための,最初のバリューベースアプローチである。
論文 参考訳(メタデータ) (2023-06-08T18:07:02Z) - A Survey on Offline Reinforcement Learning: Taxonomy, Review, and Open
Problems [0.0]
強化学習(RL)は、急速に人気が高まっている。
高いコストと環境との相互作用の危険性のため、RLにはアクセスできない領域がまだ広い範囲にある。
オフラインRLは、以前に収集されたインタラクションの静的データセットからのみ学習するパラダイムである。
論文 参考訳(メタデータ) (2022-03-02T20:05:11Z) - How to Train Your Robot with Deep Reinforcement Learning; Lessons We've
Learned [111.06812202454364]
本稿では,ロボット深部RLのケーススタディをいくつか紹介する。
深部RLにおける一般的な課題と,それらの課題について論じる。
また、他の卓越した課題についても概説し、その多くが現実世界のロボティクスの設定に特有のものである。
論文 参考訳(メタデータ) (2021-02-04T22:09:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。