Bayesian Optimization of Robustness Measures under Input Uncertainty: A Randomized Gaussian Process Upper Confidence Bound Approach
- URL: http://arxiv.org/abs/2504.03172v2
- Date: Wed, 23 Jul 2025 07:15:01 GMT
- Title: Bayesian Optimization of Robustness Measures under Input Uncertainty: A Randomized Gaussian Process Upper Confidence Bound Approach
- Authors: Yu Inatsu,
- Abstract summary: Black-box functions often involve input uncertainty.<n>Black-box functions often involve input uncertainty.<n>RRGP-UCB is a novel method that samples $beta$ from a chi-squared-based probability distribution.
- Score: 3.8979646385036175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian optimization based on the Gaussian process upper confidence bound (GP-UCB) offers a theoretical guarantee for optimizing black-box functions. In practice, however, black-box functions often involve input uncertainty. To handle such cases, GP-UCB can be extended to optimize evaluation criteria known as robustness measures. However, GP-UCB-based methods for robustness measures require a trade-off parameter, $\beta$, which, as in the original GP-UCB, must be set sufficiently large to ensure theoretical validity. In this study, we propose randomized robustness measure GP-UCB (RRGP-UCB), a novel method that samples $\beta$ from a chi-squared-based probability distribution. This approach eliminates the need to explicitly specify $\beta$. Notably, the expected value of $\beta$ under this distribution is not excessively large. Furthermore, we show that RRGP-UCB provides tight bounds on the expected regret between the optimal and estimated solutions. Numerical experiments demonstrate the effectiveness of the proposed method.
Related papers
- Mean-Field Bayesian Optimisation [11.624033826631448]
We address the problem of optimising the average payoff for a large number of cooperating agents, where the payoff function is unknown and treated as a black box.
We introduce MF-GP-UCB, a novel efficient algorithm designed to optimise agent payoffs in this setting.
Empirical results demonstrate that MF-GP-UCB significantly outperforms existing benchmarks.
arXiv Detail & Related papers (2025-02-17T20:34:29Z) - Regret Analysis for Randomized Gaussian Process Upper Confidence Bound [9.967062483758632]
This paper analyzes the randomized variant of GP-UCB called improved randomized GP-UCB.
In both regret analyses, IRGP-UCB achieves a sub-linear regret upper bound without increasing the confidence parameter if the input domain is finite.
arXiv Detail & Related papers (2024-09-02T06:49:29Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
We propose a ranking-based surrogate model based on the Poisson process and introduce an efficient BO framework, namely Poisson Process Bayesian Optimization (PoPBO)
Compared to the classic GP-BO method, our PoPBO has lower costs and better robustness to noise, which is verified by abundant experiments.
arXiv Detail & Related papers (2024-02-05T02:54:50Z) - Provably Efficient Bayesian Optimization with Unknown Gaussian Process Hyperparameter Estimation [44.53678257757108]
We propose a new BO method that can sub-linearly converge to the objective function's global optimum.
Our method uses a multi-armed bandit technique (EXP3) to add random data points to the BO process.
We demonstrate empirically that our method outperforms existing approaches on various synthetic and real-world problems.
arXiv Detail & Related papers (2023-06-12T03:35:45Z) - Randomized Gaussian Process Upper Confidence Bound with Tighter Bayesian
Regret Bounds [9.89553853547974]
This study first generalizes the regret analysis of RGP-UCB to a wider class of distributions, including the Gamma distribution.
We propose improved RGP-UCB based on a two- parameter exponential distribution, which achieves tighter Bayesian regret bounds.
We demonstrate the effectiveness of IRGP-UCB through extensive experiments.
arXiv Detail & Related papers (2023-02-03T02:48:48Z) - Bounding Box-based Multi-objective Bayesian Optimization of Risk
Measures under Input Uncertainty [21.056363101777052]
We propose a novel multi-objective Bayesian optimization (MOBO) method to efficiently identify the Pareto front (PF) defined by risk measures for black-box functions under the presence of input uncertainty (IU)
The basic idea of the proposed method is to assume a Gaussian process (GP) model for the black-box function and to construct high-probability bounding boxes for the risk measures using the GP model.
We prove that the algorithm can return an arbitrary-accurate solution in a finite number of iterations with high probability, for various risk measures such as Bayes risk, worst-case risk, and value-
arXiv Detail & Related papers (2023-01-27T08:25:45Z) - Misspecified Gaussian Process Bandit Optimization [59.30399661155574]
Kernelized bandit algorithms have shown strong empirical and theoretical performance for this problem.
We introduce a emphmisspecified kernelized bandit setting where the unknown function can be $epsilon$--uniformly approximated by a function with a bounded norm in some Reproducing Kernel Hilbert Space (RKHS)
We show that our algorithm achieves optimal dependence on $epsilon$ with no prior knowledge of misspecification.
arXiv Detail & Related papers (2021-11-09T09:00:02Z) - Adversarial Robustness Guarantees for Gaussian Processes [22.403365399119107]
Gaussian processes (GPs) enable principled computation of model uncertainty, making them attractive for safety-critical applications.
We present a framework to analyse adversarial robustness of GPs, defined as invariance of the model's decision to bounded perturbations.
We develop a branch-and-bound scheme to refine the bounds and show, for any $epsilon > 0$, that our algorithm is guaranteed to converge to values $epsilon$-close to the actual values in finitely many iterations.
arXiv Detail & Related papers (2021-04-07T15:14:56Z) - Large-Scale Methods for Distributionally Robust Optimization [53.98643772533416]
We prove that our algorithms require a number of evaluations gradient independent of training set size and number of parameters.
Experiments on MNIST and ImageNet confirm the theoretical scaling of our algorithms, which are 9--36 times more efficient than full-batch methods.
arXiv Detail & Related papers (2020-10-12T17:41:44Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
Surrogate models have been successfully used in likelihood-free inference to decrease the number of simulator evaluations.
We propose a Deep Gaussian Process (DGP) surrogate model that can handle more irregularly behaved target distributions.
Our experiments show how DGPs can outperform GPs on objective functions with multimodal distributions and maintain a comparable performance in unimodal cases.
arXiv Detail & Related papers (2020-06-18T14:24:05Z) - Uncertainty quantification using martingales for misspecified Gaussian
processes [52.22233158357913]
We address uncertainty quantification for Gaussian processes (GPs) under misspecified priors.
We construct a confidence sequence (CS) for the unknown function using martingale techniques.
Our CS is statistically valid and empirically outperforms standard GP methods.
arXiv Detail & Related papers (2020-06-12T17:58:59Z) - Near-linear Time Gaussian Process Optimization with Adaptive Batching
and Resparsification [119.41129787351092]
We introduce BBKB, the first no-regret GP optimization algorithm that provably runs in near-linear time and selects candidates in batches.
We show that the same bound can be used to adaptively delay costly updates to the sparse GP approximation, achieving a near-constant per-step amortized cost.
arXiv Detail & Related papers (2020-02-23T17:43:29Z) - Distributionally Robust Bayesian Quadrature Optimization [60.383252534861136]
We study BQO under distributional uncertainty in which the underlying probability distribution is unknown except for a limited set of its i.i.d. samples.
A standard BQO approach maximizes the Monte Carlo estimate of the true expected objective given the fixed sample set.
We propose a novel posterior sampling based algorithm, namely distributionally robust BQO (DRBQO) for this purpose.
arXiv Detail & Related papers (2020-01-19T12:00:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.