論文の概要: PPFPL: Cross-silo Privacy-preserving Federated Prototype Learning Against Data Poisoning Attacks on Non-IID Data
- arxiv url: http://arxiv.org/abs/2504.03173v1
- Date: Fri, 04 Apr 2025 05:05:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:46:55.756450
- Title: PPFPL: Cross-silo Privacy-preserving Federated Prototype Learning Against Data Poisoning Attacks on Non-IID Data
- Title(参考訳): PPFPL: クロスサイロプライバシ保護のためのフェデレーション型学習
- Authors: Hongliang Zhang, Jiguo Yu, Fenghua Xu, Chunqiang Hu, Yongzhao Zhang, Xiaofen Wang, Zhongyuan Yu, Xiaosong Zhang,
- Abstract要約: プライバシ保護 フェデレーション学習により、複数のクライアントが、隠れたモデル更新を送信することによって、ディープラーニングモデルを協調的にトレーニングできる。
既存のソリューションは、有毒な非IIDデータにおけるクロスサイロPPFLの性能向上に苦慮している。
本稿では,PFPL という名称のプライバシ保存型フェデレーション型プロトタイプ学習フレームワークを提案し,このフレームワークにより,有毒な非IIDデータにおけるクロスサイロFLの性能が向上する。
- 参考スコア(独自算出の注目度): 24.84385720209427
- License:
- Abstract: Privacy-Preserving Federated Learning (PPFL) allows multiple clients to collaboratively train a deep learning model by submitting hidden model updates. Nonetheless, PPFL is vulnerable to data poisoning attacks due to the distributed training nature of clients. Existing solutions have struggled to improve the performance of cross-silo PPFL in poisoned Non-IID data. To address the issues, this paper proposes a privacy-preserving federated prototype learning framework, named PPFPL, which enhances the cross-silo FL performance in poisoned Non-IID data while effectively resisting data poisoning attacks. Specifically, we adopt prototypes as client-submitted model updates to eliminate the impact of tampered data distribution on federated learning. Moreover, we utilize two servers to achieve Byzantine-robust aggregation by secure aggregation protocol, which greatly reduces the impact of malicious clients. Theoretical analyses confirm the convergence of PPFPL, and experimental results on publicly available datasets show that PPFPL is effective for resisting data poisoning attacks with Non-IID conditions.
- Abstract(参考訳): プライバシ保護フェデレーション学習(PPFL)は、複数のクライアントが隠れたモデル更新を送信することによって、ディープラーニングモデルを協調的にトレーニングすることを可能にする。
それでもPPFLは、クライアントの分散トレーニングの性質のため、データ中毒攻撃に対して脆弱である。
既存のソリューションは、有毒な非IIDデータにおけるクロスサイロPPFLの性能向上に苦慮している。
そこで本研究では, PPFPL と呼ばれるプライバシ保護型フェデレーション型プロトタイプ学習フレームワークを提案する。
具体的には,フェデレート学習における改ざんデータ分布の影響を排除するため,クライアントが提出したモデル更新としてプロトタイプを採用する。
さらに,Byzantine-Robustアグリゲーションをセキュアなアグリゲーションプロトコルによって実現し,悪意のあるクライアントへの影響を大幅に低減する。
理論解析によりPPFPLの収束が確認され、公開データセットの実験結果からPPFPLは非IID条件によるデータ中毒攻撃に対して有効であることが示された。
関連論文リスト
- Just a Simple Transformation is Enough for Data Protection in Vertical Federated Learning [83.90283731845867]
我々は、入力データ妥協を目標とする一般的なリスクである特徴再構成攻撃について検討する。
フェデレーションベースのモデルは、最先端の機能再構築攻撃に耐性があることが示される。
論文 参考訳(メタデータ) (2024-12-16T12:02:12Z) - Precision Guided Approach to Mitigate Data Poisoning Attacks in Federated Learning [4.907460152017894]
フェデレートラーニング(Federated Learning, FL)は、参加者が共有機械学習モデルを集合的にトレーニングすることを可能にする、協調学習パラダイムである。
データ中毒攻撃に対する現在のFL防衛戦略は、正確性と堅牢性の間のトレードオフを含む。
本稿では、FLにおけるデータ中毒攻撃を効果的に対処するために、ゾーンベースの退避更新(ZBDU)機構を利用するFedZZを提案する。
論文 参考訳(メタデータ) (2024-04-05T14:37:49Z) - Resilience in Online Federated Learning: Mitigating Model-Poisoning Attacks via Partial Sharing [6.957420925496431]
フェデレートラーニング(FL)は、プライバシを損なうことなく、分散データ上で機械学習モデルをトレーニングすることを可能にする。
FLは、悪意のあるクライアントがローカルモデルを改ざんしてグローバルモデルを操作するような、モデル中毒攻撃に弱い。
本研究では,この攻撃に対する部分共有オンラインFL(PSO-Fed)アルゴリズムのレジリエンスについて検討する。
論文 参考訳(メタデータ) (2024-03-19T19:15:38Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
マルチ分散マルチメディアクライアントは、グローバル共有モデルの共同学習のために、フェデレートラーニング(FL)を利用することができる。
FLは、GAN(C-GANs)をベースとしたクロスクライアント・ジェネレーティブ・敵ネットワーク(GANs)攻撃に苦しむ。
C-GAN攻撃に抵抗する現在のFLスキームを改善するためのFed-EDKD手法を提案する。
論文 参考訳(メタデータ) (2023-07-25T08:15:55Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - FedPerm: Private and Robust Federated Learning by Parameter Permutation [2.406359246841227]
Federated Learning(FL)は、相互に信頼できないクライアントが共通の機械学習モデルを共同でトレーニングできるようにする分散学習パラダイムである。
クライアントデータのプライバシはFLで最重要である。同時に、モデルが敵のクライアントからの攻撃から保護されなければならない。
我々は、データプライバシを増幅する新しいモデル内パラメータシャッフル技術と、クライアントのモデル更新の暗号化集約を可能にするPrivate Information Retrieval(PIR)ベースの技術を組み合わせることで、これらの問題に対処する新しいFLアルゴリズムであるFedPermを提案する。
論文 参考訳(メタデータ) (2022-08-16T19:40:28Z) - FL-Defender: Combating Targeted Attacks in Federated Learning [7.152674461313707]
フェデレートラーニング(FL)は、グローバル機械学習モデルを、参加する労働者のセット間で分散されたローカルデータから学習することを可能にする。
FLは、学習モデルの完全性に悪影響を及ぼす標的の毒殺攻撃に対して脆弱である。
FL標的攻撃に対抗する手段として,textitFL-Defenderを提案する。
論文 参考訳(メタデータ) (2022-07-02T16:04:46Z) - Mitigating the Impact of Adversarial Attacks in Very Deep Networks [10.555822166916705]
Deep Neural Network (DNN)モデルにはセキュリティに関する脆弱性がある。
データ中毒による摂動攻撃は、モデルに偽データを注入する複雑な敵対攻撃である。
そこで本研究では,攻撃に依存しない防御手法を提案する。
論文 参考訳(メタデータ) (2020-12-08T21:25:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。