論文の概要: FLAIRBrainSeg: Fine-grained brain segmentation using FLAIR MRI only
- arxiv url: http://arxiv.org/abs/2504.03376v1
- Date: Fri, 04 Apr 2025 11:47:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 17:17:34.968327
- Title: FLAIRBrainSeg: Fine-grained brain segmentation using FLAIR MRI only
- Title(参考訳): FLAIRBrainSeg: FLAIR MRIのみを用いたきめ細かい脳セグメント化
- Authors: Edern Le Bot, Rémi Giraud, Boris Mansencal, Thomas Tourdias, Josè V. Manjon, Pierrick Coupé,
- Abstract要約: 本稿では,FLAIR MRIのみを用いた新しい脳分割法を提案する。
既存の自動セグメンテーション手法を利用することで、T1強調MRIから得られるセグメンテーションを近似するネットワークを訓練する。
FLAIRBrainSegと呼ばれる本法は132構造の分節を生じ,多発性硬化症に対して堅牢である。
- 参考スコア(独自算出の注目度): 0.5277756703318045
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a novel method for brain segmentation using only FLAIR MRIs, specifically targeting cases where access to other imaging modalities is limited. By leveraging existing automatic segmentation methods, we train a network to approximate segmentations, typically obtained from T1-weighted MRIs. Our method, called FLAIRBrainSeg, produces segmentations of 132 structures and is robust to multiple sclerosis lesions. Experiments on both in-domain and out-of-domain datasets demonstrate that our method outperforms modality-agnostic approaches based on image synthesis, the only currently available alternative for performing brain parcellation using FLAIR MRI alone. This technique holds promise for scenarios where T1-weighted MRIs are unavailable and offers a valuable alternative for clinicians and researchers in need of reliable anatomical segmentation.
- Abstract(参考訳): 本稿では,FLAIR MRIのみを用いた新しい脳のセグメンテーション法を提案する。
既存の自動セグメンテーション手法を利用することで、T1強調MRIから得られるセグメンテーションを近似するネットワークを訓練する。
FLAIRBrainSegと呼ばれる本法は132構造の分節を生じ,多発性硬化症に対して堅牢である。
領域内および領域外の両方の実験では、FLAIR MRI単独で脳のパーセレーションを行うための唯一の選択肢である画像合成に基づくモダリティ非依存アプローチよりも優れていることが示されている。
この技術は、T1強調MRIが利用できないシナリオを約束するものであり、信頼できる解剖学的セグメンテーションを必要とする臨床医や研究者に価値ある代替手段を提供する。
関連論文リスト
- CT-based brain ventricle segmentation via diffusion Schrödinger Bridge without target domain ground truths [0.9720086191214947]
クリニカルCTスキャンによる高効率かつ正確な脳室分画は、腹腔鏡下手術のような緊急手術には不可欠である。
我々は,CTセグメント化の真偽を必要とせず,新しい不確実性に留意した心室分画法を導入する。
提案手法では拡散型Schr"odinger Bridgeと残像U-Netを併用し,画像診断とMRI検査を併用した。
論文 参考訳(メタデータ) (2024-05-28T15:17:58Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via Generative Adversarial Network in small sample size settings [45.62331048595689]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Learning from imperfect training data using a robust loss function:
application to brain image segmentation [0.0]
脳MRI解析では、頭部のセグメンテーションは脳の解剖学的構造の測定と可視化に一般的に用いられる。
本稿では,T1強調MRIのみを入力として,脳,頭蓋,頭蓋外組織を分割できるディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-08T19:08:32Z) - Multiple Sclerosis Lesions Segmentation using Attention-Based CNNs in
FLAIR Images [0.2578242050187029]
多発性硬化症(Multiple Sclerosis、MS)は、中枢神経系の病変を引き起こす自己免疫性脱髄性疾患である。
今のところ、病変の分断には多要素自動バイオメディカルアプローチが多用されている。
著者らは1つのモダリティ(FLAIR画像)を用いてMS病変を正確に分類する方法を提案する。
論文 参考訳(メタデータ) (2022-01-05T21:37:43Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
SpineOneと呼ばれる一段階検出フレームワークを提案し、MRIスライスから変性椎骨と椎骨を同時に局在化・分類する。
1)キーポイントの局所化と分類を促進するためのキーポイント・ヒートマップの新しい設計、2)ディスクと脊椎の表現をよりよく区別するためのアテンション・モジュールの使用、3)後期訓練段階における複数の学習目標を関連付けるための新しい勾配誘導客観的アソシエーション機構。
論文 参考訳(メタデータ) (2021-10-28T12:59:06Z) - Comparison of atlas-based and neural-network-based semantic segmentation
for DENSE MRI images [0.8701566919381223]
2つのセグメンテーション法(アトラス法とニューラルネット法)を比較した。
セグメンテーションはこれらの地域の平均変位を推定するための前提条件である。
論文 参考訳(メタデータ) (2021-09-29T00:42:43Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Anatomy-guided Multimodal Registration by Learning Segmentation without
Ground Truth: Application to Intraprocedural CBCT/MR Liver Segmentation and
Registration [12.861503169117208]
マルチモーダル画像登録は、診断医療画像と画像誘導介入に多くの応用がある。
周術期獲得診断画像を周術期内環境に登録する能力は、周術期内腫瘍ターゲティングを改善する可能性がある。
対象のモダリティ基礎真理を含まないセグメンテーション学習のためのセグメンテーションネットワーク(APA2Seg-Net)に対する解剖学的保護ドメイン適応を提案する。
論文 参考訳(メタデータ) (2021-04-14T18:07:03Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。