論文の概要: Learning from imperfect training data using a robust loss function:
application to brain image segmentation
- arxiv url: http://arxiv.org/abs/2208.04941v1
- Date: Mon, 8 Aug 2022 19:08:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-11 12:41:59.928962
- Title: Learning from imperfect training data using a robust loss function:
application to brain image segmentation
- Title(参考訳): 頑健な損失関数を用いた不完全訓練データからの学習:脳画像分割への応用
- Authors: Haleh Akrami, Wenhui Cui, Anand A Joshi, Richard M. Leahy
- Abstract要約: 脳MRI解析では、頭部のセグメンテーションは脳の解剖学的構造の測定と可視化に一般的に用いられる。
本稿では,T1強調MRIのみを入力として,脳,頭蓋,頭蓋外組織を分割できるディープラーニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmentation is one of the most important tasks in MRI medical image analysis
and is often the first and the most critical step in many clinical
applications. In brain MRI analysis, head segmentation is commonly used for
measuring and visualizing the brain's anatomical structures and is also a
necessary step for other applications such as current-source reconstruction in
electroencephalography and magnetoencephalography (EEG/MEG). Here we propose a
deep learning framework that can segment brain, skull, and extra-cranial tissue
using only T1-weighted MRI as input. In addition, we describe a robust method
for training the model in the presence of noisy labels.
- Abstract(参考訳): セグメンテーションはMRIの医用画像解析において最も重要な課題の1つであり、多くの臨床応用において最初の最も重要なステップであることが多い。
脳MRI解析では、頭部のセグメンテーションは脳の解剖学的構造を計測し視覚化するために一般的に用いられ、脳波や脳磁図(EEG/MEG)における電流源の再構築などの他の応用にも必要である。
本稿では,T1強調MRIのみを入力として,脳,頭蓋,頭蓋外組織を分割できるディープラーニングフレームワークを提案する。
さらに,ノイズラベルの存在下でモデルをトレーニングするためのロバストな手法について述べる。
関連論文リスト
- Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
論文 参考訳(メタデータ) (2024-07-31T04:32:43Z) - Segment anything model (SAM) for brain extraction in fMRI studies [0.0]
我々は頭蓋骨のアーティファクトを除去することで脳のセグメンテーションを神経画像化するためのセグメントモデル(SAM)を用いる。
実験の結果は、カスタムな医用画像データセットをトレーニングすることなく、神経画像の自動分割アルゴリズムを用いて探索する有望な結果を示した。
論文 参考訳(メタデータ) (2024-01-09T06:25:09Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - SHARM: Segmented Head Anatomical Reference Models [1.3108652488669732]
本研究は196名の被験者からなるオープンアクセス・セグメンテッド・ヘッド解剖学的基準モデル(SHARM)を提供する。
SHARMは、電磁線ドシメトリー研究だけでなく、異なる人間の頭部セグメンテーション応用にも有用なベンチマークとして期待されている。
論文 参考訳(メタデータ) (2023-09-13T02:24:37Z) - Brain tumor multi classification and segmentation in MRI images using
deep learning [3.1248717814228923]
この分類モデルはEfficientNetB1アーキテクチャに基づいており、画像は髄膜腫、グリオーマ、下垂体腺腫、腫瘍の4つのクラスに分類するよう訓練されている。
セグメンテーションモデルはU-Netアーキテクチャに基づいており、MRI画像から腫瘍を正確にセグメンテーションするように訓練されている。
論文 参考訳(メタデータ) (2023-04-20T01:32:55Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
SpineOneと呼ばれる一段階検出フレームワークを提案し、MRIスライスから変性椎骨と椎骨を同時に局在化・分類する。
1)キーポイントの局所化と分類を促進するためのキーポイント・ヒートマップの新しい設計、2)ディスクと脊椎の表現をよりよく区別するためのアテンション・モジュールの使用、3)後期訓練段階における複数の学習目標を関連付けるための新しい勾配誘導客観的アソシエーション機構。
論文 参考訳(メタデータ) (2021-10-28T12:59:06Z) - Deep Transfer Learning for Brain Magnetic Resonance Image Multi-class
Classification [0.6117371161379209]
我々は、Deep Transfer Learningを用いて脳MRI画像中の腫瘍の多重分類を行うフレームワークを開発した。
新たなデータセットと2つの公開MRI脳データセットを使用して、提案手法は86.40%の精度で分類された。
本研究は,脳腫瘍のマルチクラス化タスクにおいて,トランスファーラーニングのためのフレームワークが有用かつ効果的な方法であることを示すものである。
論文 参考訳(メタデータ) (2021-06-14T12:19:27Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z) - Transfer Learning for Brain Tumor Segmentation [0.6408773096179187]
グリオーマは、化学療法や手術で治療される最も一般的な悪性脳腫瘍である。
近年のディープラーニングの進歩により、様々な視覚認識タスクに優れた畳み込みニューラルネットワークアーキテクチャが実現されている。
本研究では,事前学習した畳み込みエンコーダを用いてFCNを構築し,この方法でトレーニングプロセスを安定させ,ダイススコアやハウスドルフ距離に対する改善を実現することを示す。
論文 参考訳(メタデータ) (2019-12-28T12:45:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。