論文の概要: Hybrid Real- and Complex-valued Neural Network Architecture
- arxiv url: http://arxiv.org/abs/2504.03497v1
- Date: Fri, 04 Apr 2025 14:52:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:47:37.027557
- Title: Hybrid Real- and Complex-valued Neural Network Architecture
- Title(参考訳): ハイブリッド実数値・複素数値ニューラルネットワークアーキテクチャ
- Authors: Alex Young, Luan Vinícius Fiorio, Bo Yang, Boris Karanov, Wim van Houtum, Ronald M. Aarts,
- Abstract要約: 本稿では,実数値処理の計算効率と複素数値データを扱う能力を組み合わせることを目的として,HNNアーキテクチャを提案する。
AudioMNISTデータセットによる実験では、HNNはクロスエントロピー損失を低減し、考慮されたすべてのケースでRVNNと比較してパラメータを消費する。
- 参考スコア(独自算出の注目度): 2.6739705603496327
- License:
- Abstract: We propose a \emph{hybrid} real- and complex-valued \emph{neural network} (HNN) architecture, designed to combine the computational efficiency of real-valued processing with the ability to effectively handle complex-valued data. We illustrate the limitations of using real-valued neural networks (RVNNs) for inherently complex-valued problems by showing how it learnt to perform complex-valued convolution, but with notable inefficiencies stemming from its real-valued constraints. To create the HNN, we propose to use building blocks containing both real- and complex-valued paths, where information between domains is exchanged through domain conversion functions. We also introduce novel complex-valued activation functions, with higher generalisation and parameterisation efficiency. HNN-specific architecture search techniques are described to navigate the larger solution space. Experiments with the AudioMNIST dataset demonstrate that the HNN reduces cross-entropy loss and consumes less parameters compared to an RVNN for all considered cases. Such results highlight the potential for the use of partially complex-valued processing in neural networks and applications for HNNs in many signal processing domains.
- Abstract(参考訳): 本稿では,実数値処理の計算効率と,複素数値処理を効果的に処理できる能力を組み合わせることを目的として,実数値処理と複素数値処理を併用したHNNアーキテクチャを提案する。
実数値ニューラルネットワーク(RVNN)を本質的に複雑な数値問題に使用する際の限界について、複雑な値の畳み込みをいかに学習するかを示すとともに、実数値の制約から生じる顕著な非効率性を示す。
HNNを作成するために,ドメイン間の情報をドメイン変換関数を介して交換する,実数値パスと複素数値パスの両方を含むビルディングブロックを提案する。
また、より高度な一般化とパラメータ化効率を有する新規な複素数値活性化関数も導入する。
HNN固有のアーキテクチャ探索技術は、より大きなソリューション空間をナビゲートするために記述されている。
AudioMNISTデータセットによる実験では、HNNはクロスエントロピー損失を低減し、考慮されたすべてのケースでRVNNと比較してパラメータを消費する。
このような結果は、ニューラルネットワークにおける部分複素数値処理の利用の可能性と、多くの信号処理領域におけるHNNへの応用を強調している。
関連論文リスト
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Steinmetz Neural Networks for Complex-Valued Data [23.80312814400945]
本稿では,並列実数値処理と結合出力を組み合わせたDNNを用いた複素数値データ処理手法を提案する。
提案するアーキテクチャのクラスは、Steinmetz Neural Networksと呼ばれ、多視点学習を取り入れて、潜在空間におけるより解釈可能な表現を構築する。
この数値実験では,提案するネットワークがベンチマークデータセットと合成例を用いて提案する付加雑音に対する性能改善と頑健性について述べる。
論文 参考訳(メタデータ) (2024-09-16T08:26:06Z) - A simple algorithm for output range analysis for deep neural networks [0.0]
本稿では,Deep Neural Networks (DNN) における出力範囲推定問題に対して,Simulated Annealing (SA) アルゴリズムを統合した新しい手法を提案する。
この方法はResNetsに固有の幾何学的情報や非線形性の欠如による課題に効果的に対処する。
論文 参考訳(メタデータ) (2024-07-02T22:47:40Z) - An Efficient Approach to Regression Problems with Tensor Neural Networks [5.345144592056051]
本稿では、非パラメトリック回帰問題に対処するテンソルニューラルネットワーク(TNN)を提案する。
TNNは従来のFeed-Forward Networks (FFN) や Radial Basis Function Networks (RBN) よりも優れた性能を示している。
このアプローチにおける重要な革新は、統計回帰とTNNフレームワーク内の数値積分の統合である。
論文 参考訳(メタデータ) (2024-06-14T03:38:40Z) - On the Computational Complexities of Complex-valued Neural Networks [0.0]
複素数値ニューラルネットワーク(CVNN)は、複素領域データのデジタル信号処理に使用される非線形フィルタである。
本稿では,CVNNの量的および計算的複雑さについて述べる。
論文 参考訳(メタデータ) (2023-10-19T18:14:04Z) - Point-aware Interaction and CNN-induced Refinement Network for RGB-D Salient Object Detection [95.84616822805664]
我々は,CNNによるトランスフォーマーアーキテクチャを導入し,ポイント・アウェア・インタラクションとCNNによるリファインメントを備えた新しいRGB-D SODネットワークを提案する。
トランスフォーマーがもたらすブロック効果とディテール破壊問題を自然に軽減するために,コンテンツリファインメントとサプリメントのためのCNNRユニットを設計する。
論文 参考訳(メタデータ) (2023-08-17T11:57:49Z) - Rethinking complex-valued deep neural networks for monaural speech
enhancement [22.033822936410246]
複素数値深部ニューラルネットワーク(DNN)は、モノラル音声強調のための実値よりも性能が向上しないことを示す。
また,複素数値演算を用いることで,モデルサイズが小さい場合のモデルキャパシティを損なうことも判明した。
論文 参考訳(メタデータ) (2023-01-11T05:59:50Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。