Overcoming the Sim-to-Real Gap: Leveraging Simulation to Learn to Explore for Real-World RL
- URL: http://arxiv.org/abs/2410.20254v1
- Date: Sat, 26 Oct 2024 19:12:27 GMT
- Title: Overcoming the Sim-to-Real Gap: Leveraging Simulation to Learn to Explore for Real-World RL
- Authors: Andrew Wagenmaker, Kevin Huang, Liyiming Ke, Byron Boots, Kevin Jamieson, Abhishek Gupta,
- Abstract summary: We show that in many regimes, while direct sim2real transfer may fail, we can utilize the simulator to learn a set of emphexploratory policies.
In particular, in the setting of low-rank MDPs, we show that coupling these exploratory policies with simple, practical approaches.
This is the first evidence that simulation transfer yields a provable gain in reinforcement learning in settings where direct sim2real transfer fails.
- Score: 25.991354823569033
- License:
- Abstract: In order to mitigate the sample complexity of real-world reinforcement learning, common practice is to first train a policy in a simulator where samples are cheap, and then deploy this policy in the real world, with the hope that it generalizes effectively. Such \emph{direct sim2real} transfer is not guaranteed to succeed, however, and in cases where it fails, it is unclear how to best utilize the simulator. In this work, we show that in many regimes, while direct sim2real transfer may fail, we can utilize the simulator to learn a set of \emph{exploratory} policies which enable efficient exploration in the real world. In particular, in the setting of low-rank MDPs, we show that coupling these exploratory policies with simple, practical approaches -- least-squares regression oracles and naive randomized exploration -- yields a polynomial sample complexity in the real world, an exponential improvement over direct sim2real transfer, or learning without access to a simulator. To the best of our knowledge, this is the first evidence that simulation transfer yields a provable gain in reinforcement learning in settings where direct sim2real transfer fails. We validate our theoretical results on several realistic robotic simulators and a real-world robotic sim2real task, demonstrating that transferring exploratory policies can yield substantial gains in practice as well.
Related papers
- Sim-to-Real Transfer of Deep Reinforcement Learning Agents for Online Coverage Path Planning [15.792914346054502]
We tackle the challenge of sim-to-real transfer of reinforcement learning (RL) agents for coverage path planning ( CPP)
We bridge the sim-to-real gap through a semi-virtual environment, including a real robot and real-time aspects, while utilizing a simulated sensor and obstacles.
We find that a high inference frequency allows first-order Markovian policies to transfer directly from simulation, while higher-order policies can be fine-tuned to further reduce the sim-to-real gap.
arXiv Detail & Related papers (2024-06-07T13:24:19Z) - DrEureka: Language Model Guided Sim-To-Real Transfer [64.14314476811806]
Transferring policies learned in simulation to the real world is a promising strategy for acquiring robot skills at scale.
In this paper, we investigate using Large Language Models (LLMs) to automate and accelerate sim-to-real design.
Our approach is capable of solving novel robot tasks, such as quadruped balancing and walking atop a yoga ball.
arXiv Detail & Related papers (2024-06-04T04:53:05Z) - Sim-and-Real Reinforcement Learning for Manipulation: A Consensus-based
Approach [4.684126055213616]
We propose a Consensus-based Sim-And-Real deep reinforcement learning algorithm (CSAR) for manipulator pick-and-place tasks.
We train the agents in simulators and the real world to get the optimal policies for both sim-and-real worlds.
arXiv Detail & Related papers (2023-02-26T22:27:23Z) - Zero-shot Sim2Real Adaptation Across Environments [45.44896435487879]
We propose a Reverse Action Transformation (RAT) policy which learns to imitate simulated policies in the real-world.
RAT can then be deployed on top of a Universal Policy Network to achieve zero-shot adaptation to new environments.
arXiv Detail & Related papers (2023-02-08T11:59:07Z) - Provable Sim-to-real Transfer in Continuous Domain with Partial
Observations [39.18274543757048]
Sim-to-real transfer trains RL agents in the simulated environments and then deploys them in the real world.
We show that a popular robust adversarial training algorithm is capable of learning a policy from the simulated environment that is competitive to the optimal policy in the real-world environment.
arXiv Detail & Related papers (2022-10-27T16:37:52Z) - Sim-to-Real via Sim-to-Seg: End-to-end Off-road Autonomous Driving
Without Real Data [56.49494318285391]
We present Sim2Seg, a re-imagining of RCAN that crosses the visual reality gap for off-road autonomous driving.
This is done by learning to translate randomized simulation images into simulated segmentation and depth maps.
This allows us to train an end-to-end RL policy in simulation, and directly deploy in the real-world.
arXiv Detail & Related papers (2022-10-25T17:50:36Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
We train a policy that can perform robust dexterous manipulation on an anthropomorphic robot hand.
Our work reaffirms the possibilities of sim-to-real transfer for dexterous manipulation in diverse kinds of hardware and simulator setups.
arXiv Detail & Related papers (2022-10-25T01:51:36Z) - Real2Sim or Sim2Real: Robotics Visual Insertion using Deep Reinforcement
Learning and Real2Sim Policy Adaptation [8.992053371569678]
In this work, we solve the insertion task using a pure visual reinforcement learning solution with minimum infrastructure requirement.
We also propose a novel sim2real strategy, Real2Sim, which provides a novel and easier solution in policy adaptation.
arXiv Detail & Related papers (2022-06-06T15:27:25Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z) - RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real [74.45688231140689]
We introduce the RL-scene consistency loss for image translation, which ensures that the translation operation is invariant with respect to the Q-values associated with the image.
We obtain RL-CycleGAN, a new approach for simulation-to-real-world transfer for reinforcement learning.
arXiv Detail & Related papers (2020-06-16T08:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.